Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Characterization of concentration- and use-dependent effects of quinidine from conduction delay and declining conduction velocity in canine Purkinje fibers.
D L Packer, … , H C Strauss, C F Starmer
D L Packer, … , H C Strauss, C F Starmer
Published June 1, 1989
Citation Information: J Clin Invest. 1989;83(6):2109-2119. https://doi.org/10.1172/JCI114124.
View: Text | PDF
Research Article

Characterization of concentration- and use-dependent effects of quinidine from conduction delay and declining conduction velocity in canine Purkinje fibers.

  • Text
  • PDF
Abstract

The dynamic response of squared conduction velocity, theta 2, to repetitive stimulation in canine Purkinje fibers with quinidine was studied using a double-microelectrode technique. With stimulation, a frequency-dependent monoexponential increase in conduction delay (CD) and a decline in theta 2 were observed. The exponential rates and changes in steady-state CD and theta 2 were frequency- and concentration-dependent. The overall drug uptake rates describing blockade and the interpulse recovery interval were linearly related and steady-state values of theta 2 were linearly related to an exponential function of the stimulus intervals. Based on first-order binding, the frequency- and concentration-dependent properties of quinidine were characterized by the apparent binding and unbinding rates of 14.2 +/- 5.7 X 10(6) mol-1.s-1 and 63 +/- 12 s-1 for activated and 14.8 +/- 1.0 X 10(2) mol-1.s-1 and 0.16 +/- 0.03 s-1 for resting states. The recovery time constant extracted from the pulse train interpulse interval was 5.8 +/- 1.5 s compared with 5.1 +/- 0.6 s determined from a posttrain test pulse protocol. This study demonstrates that the kinetics of drug action can be derived from measures of impulse propagation. This provides a basis for characterizing frequency-dependent properties of antiarrhythmic agents in vivo and suggests the plausibility of a quantitative assessment of drug binding and recovery rates in man.

Authors

D L Packer, A O Grant, H C Strauss, C F Starmer

×

Full Text PDF

Download PDF (2.41 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts