Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Effects of interferon-gamma on expression of cell surface receptors for collagen and deposition of newly synthesized collagen by cultured human lung fibroblasts.
J G Clark, … , E A Wayner, W G Carter
J G Clark, … , E A Wayner, W G Carter
Published May 1, 1989
Citation Information: J Clin Invest. 1989;83(5):1505-1511. https://doi.org/10.1172/JCI114045.
View: Text | PDF
Research Article Article has an altmetric score of 7

Effects of interferon-gamma on expression of cell surface receptors for collagen and deposition of newly synthesized collagen by cultured human lung fibroblasts.

  • Text
  • PDF
Abstract

We used cultured human diploid lung fibroblasts as a model system to examine the effects of recombinant IFN-gamma on synthesis of collagen, matrix deposition of newly synthesized collagen, and the expression of cell surface receptors for collagen. Using [3H]proline-labeled cells we found that IFN-gamma resulted in dose-dependent inhibition of fibroblast collagen synthesis. Pulse-chase experiments to analyze compartmentalization of newly synthesized collagen showed that the decrease in collagen synthesis was confined to the soluble pool of procollagen in the medium, while extracellular matrix associated collagen was not changed, indicating that a larger proportion of newly synthesized collagen was deposited into the matrix in IFN-gamma exposed fibroblasts (34.2 vs. 25.3%). This increase in the efficiency of collagen matrix deposition was associated with enhanced expression of a cell surface receptor for collagen as detected by indirect immunofluorescence labeling and analysis by flow cytometry. Fibroblasts (IMR-90) cultured in the presence of IFN-gamma (1,000 U/ml) exhibited a twofold increase in mean linear fluorescence intensity compared with cells cultured under control conditions. The distribution of log fluorescence intensity in both control and IFN-gamma exposed cells was normally distributed about the mean, indicating that discrete subpopulations with respect to receptor expression were not present. Increased fluorescence intensity and log normal distribution of fluorescence intensity also were identified in IFN-gamma-treated lung fibroblasts from a normal adult individual and two strains obtained from patients with pulmonary fibrosis. These results indicate that IFN-gamma modulates fibroblast collagen matrix deposition as well as collagen synthesis. The associated increase in collagen receptors suggests that cytokine-mediated modulation of the cell surface maybe a contributing factor in regulation of fibroblast collagen accumulation in the extracellular matrix or in cellular interaction with collagen-containing matrix. Such an effect could modulate the interaction of fibroblasts with extracellular matrix at sites of inflammation and play an important role in the remodeling of matrix during repair from tissue injury.

Authors

J G Clark, T F Dedon, E A Wayner, W G Carter

×

Full Text PDF

Download PDF (1.36 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 1 policy sources
Posted by 1 X users
Referenced in 1 clinical guideline sources
20 readers on Mendeley
See more details