Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Growth factor expression in aorta of normotensive and hypertensive rats.
R Sarzani, … , P Brecher, A V Chobanian
R Sarzani, … , P Brecher, A V Chobanian
Published April 1, 1989
Citation Information: J Clin Invest. 1989;83(4):1404-1408. https://doi.org/10.1172/JCI114029.
View: Text | PDF
Research Article

Growth factor expression in aorta of normotensive and hypertensive rats.

  • Text
  • PDF
Abstract

Hypertension causes biochemical and morphological changes in the vessel wall by unknown mechanisms. Locally produced substances may have a role in mediating these vascular changes. We have studied the expression of platelet-derived growth factor (PDGF) B chain and PDGF A chain, insulin-like growth factor (IGF)-I and IGF-II, endothelial cell growth factor (ECGF), basic fibroblast growth factor (bFGF), and transforming growth factor-beta (TGF-beta) in aortic tissue from normotensive rats and rats made hypertensive by deoxycorticosterone (DOC)/salt treatment. Using Northern blotting, we found that genes for each of these growth factors were transcriptionally active in the aorta of both normotensive and hypertensive rats. TGF-beta aortic mRNA levels increased up to threefold as a result of DOC/salt hypertension. In contrast, no major changes in the expression of either PDGF chain, IGF-I or II, ECGF, or bFGF were detectable. The results indicate that at least seven genes coding for growth factors that were shown previously to influence growth and function of vascular cells in vitro, are expressed in rat aorta in vivo. These findings support the hypothesis that synthesis and release of growth factors in the arterial wall are involved in autocrine and/or paracrine regulatory mechanisms. In addition, the increased expression of TGF-beta in vivo may have a role in mediating the aortic changes induced by hypertension.

Authors

R Sarzani, P Brecher, A V Chobanian

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 125 3
PDF 47 11
Figure 0 1
Scanned page 150 1
Citation downloads 55 0
Totals 377 16
Total Views 393
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts