Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Citations to this article

Effects of acetazolamide on Na+-HCO-3 cotransport in basolateral membrane vesicles isolated from rabbit renal cortex.
M Soleimani, P S Aronson
M Soleimani, P S Aronson
Published March 1, 1989
Citation Information: J Clin Invest. 1989;83(3):945-951. https://doi.org/10.1172/JCI113980.
View: Text | PDF
Research Article

Effects of acetazolamide on Na+-HCO-3 cotransport in basolateral membrane vesicles isolated from rabbit renal cortex.

  • Text
  • PDF
Abstract

We evaluated the effects of acetazolamide on Na+-HCO3- cotransport in basolateral membrane vesicles isolated from the rabbit renal cortex. Na+ uptake stimulated by an imposed inward HCO3- gradient was not significantly reduced by 1.2 mM acetazolamide, indicating that acetazolamide does not directly inhibit Na+-HCO3- cotransport. 4,4'-Diisothiocyanostilbene-2,2'-disulfonate (DIDS)-sensitive Na+-base cotransport was found to be absolutely CO2/HCO3--dependent. We therefore tested whether acetazolamide-sensitive availability of HCO3- at the basolateral membrane could be rate-limiting for Na+-base cotransport under some conditions. In the presence of a CO2/HCO3- buffer system but absence of an initial HCO3- gradient, Na+ influx was stimulated fivefold by an outward NH4+ gradient. This stimulation of Na+ influx by an outward NH4+ gradient was inhibited greater than 75% by 0.6 mM acetazolamide, suggesting that acetazolamide blocked the ability of the NH4+ gradient to generate an inward HCO3- gradient. In the presence of an inward HCO3- gradient, Na+ influx was inhibited greater than 70% by an inward NH4+ gradient. This inhibition of Na+ influx was reduced to only 35% by 0.6 mM acetazolamide, suggesting that acetazolamide blocked the ability of NH4+ to collapse the inward HCO3- gradient. Similarly, Na+ influx in the presence of an inward HCO3- gradient was inhibited greater than 80% by an outward acetate gradient, and this inhibition was reduced to only 50% by acetazolamide. Thus, acetazolamide caused either inhibition or stimulation of Na+ uptake depending on the conditions with respect to pH and HCO3- gradients. The indirect interaction of acetazolamide with the basolateral membrane Na+-HCO3- cotransport system may be an important mechanism underlying inhibition of proximal tubule acid secretion by this agent.

Authors

M Soleimani, P S Aronson

×

Loading citation information...
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts