Advertisement
Research Article Free access | 10.1172/JCI113973
Department of Medicine, University of California, San Francisco 94143-0532.
Find articles by Krapf, R. in: JCI | PubMed | Google Scholar
Published March 1, 1989 - More info
The hyperbicarbonatemia of chronic respiratory acidosis is maintained by enhanced bicarbonate reabsorption in the proximal tubule. To investigate the cellular mechanisms involved in this adaptation, cell and luminal pH were measured microfluorometrically using (2",7')-bis(carboxyethyl)-(5,6)-carboxyfluorescein in isolated, microperfused S2 proximal convoluted tubules from control and acidotic rabbits. Chronic respiratory acidosis was induced by exposure to 10% CO2 for 52-56 h. Tubules from acidotic rabbits had a significantly lower luminal pH after 1-mm perfused length (7.03 +/- 0.09 vs. 7.26 +/- 0.06 in controls, perfusion rate = 10 nl/min). Chronic respiratory acidosis increased the initial rate of cell acidification (dpHi/dt) in response to luminal sodium removal by 63% and in response to lowering luminal pH (7.4-6.8) by 69%. Chronic respiratory acidosis also increased dpHi/dt in response to peritubular sodium removal by 63% and in response to lowering peritubular pH by 73%. In conclusion, chronic respiratory acidosis induces a parallel increase in the rates of the luminal Na/H antiporter and the basolateral Na/(HCO3)3 cotransporter. Therefore, the enhanced proximal tubule reabsorption of bicarbonate in chronic respiratory acidosis may be, at least in part, mediated by a parallel adaptation of these transporters.