Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Epidermal growth factor inhibits the hydroosmotic effect of vasopressin in the isolated perfused rabbit cortical collecting tubule.
M D Breyer, … , H R Jacobson, J A Breyer
M D Breyer, … , H R Jacobson, J A Breyer
Published October 1, 1988
Citation Information: J Clin Invest. 1988;82(4):1313-1320. https://doi.org/10.1172/JCI113732.
View: Text | PDF
Research Article

Epidermal growth factor inhibits the hydroosmotic effect of vasopressin in the isolated perfused rabbit cortical collecting tubule.

  • Text
  • PDF
Abstract

Epidermal growth factor (EGF) is a 53-amino acid polypeptide which is a potent mitogen for cultured cells. The kidney has recently been shown to be a major site of synthesis for the EGF precursor. EGF infusions in sheep result in a diuresis and natriuresis despite a fall in GFR, suggesting a direct tubular effect. Using in vitro microperfusion of rabbit cortical collecting tubules (CCTs) at 37 degrees C, we examined the effect of EGF on the transepithelial voltage (Vt) and arginine vasopressin (AVP)-stimulated hydraulic conductivity (Lp). Pretreatment with peritubular EGF at concentrations from 10(-8) to 10(-12) M resulted in a 50% inhibition of both AVP- and 8-chlorophenythio-cyclic AMP-stimulated peak Lp. This effect was reversed by the protein kinase C inhibitor, staurosporine, but unaffected by indomethacin. CCTs with an initially negative Vt, depolarized after exposure to bath EGF. 10(-8) M EGF applied from the lumen had no effect on either Lp or Vt. Specific binding of 20 nM 125I-EGF to microdissected CCTs was also demonstrated. These results suggest that EGF can modulate both salt and water transport in the CCT via a receptor linked to protein kinase C activation.

Authors

M D Breyer, H R Jacobson, J A Breyer

×

Full Text PDF

Download PDF (1.84 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts