Thyroid-stimulating hormone (TSH) and insulin-like growth factor-1 (IGF-1) synergistically stimulate DNA synthesis in thyroid cells. In this report, a novel mechanism for mediation of this synergistic interaction is described in rat thyroid (FRTL-5) cells. Because phorbol myristate acetate stimulates DNA synthesis, the effects of TSH, IGF-1 and insulin on FRTL-5 cell content of 1,2-diacylglycerol (1,2-DG), the endogenous activator of protein kinase C, were measured. After 6 d, TSH, IGF-1 and insulin caused increases in cellular 1,2-DG (mean +/- SE) to 180 +/- 10%, 540 +/- 50%, and 360 +/- 40% of control, respectively, whereas TSH plus IGF-1 and TSH plus insulin synergistically increased 1,2-DG to 1,890 +/- 310% and 1,690 +/- 230%, respectively. In the absence of insulin, the effect of TSH to elevate 1,2-DG exhibited an EC50 of approximately 2,000 microU/ml. The synergistic interaction of insulin and TSH was found to increase the potency of TSH by 300-fold (EC50 was approximately 7 microU/ml) in addition to increasing the efficacy of TSH. The effect of TSH appeared to be mediated by TSH-stimulated increases in cyclic AMP (cAMP). Forskolin and 8-bromo-cAMP, like TSH, caused modest increases in 1,2-DG and DNA synthesis, whereas forskolin plus insulin and 8-bromo-cAMP plus insulin markedly elevated 1,2-DG content and stimulated DNA synthesis. Under all conditions, increases in 1,2-DG content correlated with stimulation of DNA synthesis. These findings suggest that the synergistic stimulation of DNA synthesis in thyroid cells by TSH, via cAMP, and IGF-1 is mediated by 1,2-DG. Moreover, they implicate a novel interaction between the lipid and adenylyl cyclase signaling systems for the regulation of cell proliferation.
L Brenner-Gati, K A Berg, M C Gershengorn
Usage data is cumulative from January 2024 through January 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 150 | 0 |
42 | 30 | |
Scanned page | 132 | 4 |
Citation downloads | 38 | 0 |
Totals | 362 | 34 |
Total Views | 396 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.