A systemic reappraisal of the thermic effect of food was done in lean and obese males randomly fed mixed meals containing 0, 8, 16, 24, and 32 kcal/kg fat-free mass. Densitometric analysis was used to measure body composition. Preprandial and postprandial energy expenditures were measured by indirect calorimetry. The data show that the thermic effect of food was linearly correlated with caloric intake, and that the magnitude and duration of augmented postprandial thermogenesis increased linearly with caloric consumption. Postprandial energy expenditures over resting metabolic requirements were indistinguishable when comparing lean and obese men for a given caloric intake. Individuals, however, had distinct and consistent thermic responses to progressively greater caloric challenges. These unique thermic profiles to food ingestion were also independent of leanness or obesity. We conclude that the thermic effect of food increases linearly with caloric intake, and is independent of leanness and obesity.
D A D'Alessio, E C Kavle, M A Mozzoli, K J Smalley, M Polansky, Z V Kendrick, L R Owen, M C Bushman, G Boden, O E Owen
Usage data is cumulative from January 2024 through January 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 443 | 10 |
70 | 65 | |
Figure | 0 | 4 |
Scanned page | 357 | 76 |
Citation downloads | 51 | 0 |
Totals | 921 | 155 |
Total Views | 1,076 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.