Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
In vivo regulation of glycolytic and gluconeogenic enzyme gene expression in newborn rat liver.
S Lyonnet, … , A Kahn, A Munnich
S Lyonnet, … , A Kahn, A Munnich
Published June 1, 1988
Citation Information: J Clin Invest. 1988;81(6):1682-1689. https://doi.org/10.1172/JCI113506.
View: Text | PDF
Research Article

In vivo regulation of glycolytic and gluconeogenic enzyme gene expression in newborn rat liver.

  • Text
  • PDF
Abstract

Glucagon and its second messenger, cAMP, are known to rapidly block expression of the L-type pyruvate kinase gene and to stimulate expression of phosphoenolpyruvate (PEP) carboxykinase gene in the liver in vivo. The respective roles, however, of hyperglucagonemia, insulinopenia, and carbohydrate deprivation in the inhibition of L-type pyruvate kinase gene expression during fasting are poorly understood. In addition, the long-term effects of physiological hyperglucagonemia on expression of the two genes are not known. In this study, we investigate the effects of long-term physiological hyperglucagonemia and insulinopenia induced by suckling (which provides a high-fat, low-carbohydrate diet) on expression of the two genes in the liver of normal newborn rats. We show that transcription of the L-type pyruvate kinase gene is inhibited at birth and remains low during the whole suckling period, whereas transcription of the PEP carboxykinase gene is maximal in the neonate, and then decreases despite very high levels of plasma glucagon during suckling. In contrast to the adult, however, in which L-type pyruvate kinase gene expression in the liver is blocked by cAMP and stimulated by carbohydrates, the regulation of L-type pyruvate kinase gene expression in the newborn undergoes a developmental maturation: the inhibitory effect of glucagon is never complete in developing rat liver and the stimulatory effect of glucose could not be detected during suckling, due to either hyperglucagonemia, immaturity of the gene regulatory system, or both.

Authors

S Lyonnet, C Coupé, J Girard, A Kahn, A Munnich

×

Full Text PDF

Download PDF (2.05 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts