Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Inhibitory effects of volume expansion performed in vivo on transport in the isolated rabbit proximal tubule perfused in vitro.
T O Pitts, … , M E Rose, J B Puschett
T O Pitts, … , M E Rose, J B Puschett
Published April 1, 1988
Citation Information: J Clin Invest. 1988;81(4):997-1003. https://doi.org/10.1172/JCI113454.
View: Text | PDF
Research Article

Inhibitory effects of volume expansion performed in vivo on transport in the isolated rabbit proximal tubule perfused in vitro.

  • Text
  • PDF
Abstract

To examine the renal tubular sites and mechanisms involved in the effects of hypooncotic volume expansion (VE) on renal electrolyte excretion, we performed clearance and isolated tubular perfusion studies using intact and thyroparathyroidectomized (TPTX) rabbits. We also examined the effect of VE on luminal brush border transport. In the microperfusion studies, proximal convoluted (PCT) and straight (PST) tubules were taken from rabbits without prior VE or after 30 min of 6% (body wt) VE. Acute VE increased the percentage excretion of Na, Ca, and P in TPTX animals and the percentage and absolute excretions of these ions in intact rabbits. In PST from VE animals, fluid flux (Jv) was depressed compared with Jv in PST from nonVE rabbits: Jv = 0.18 +/- 0.03, (VE) vs. 0.31 +/- 0.03 nl/mm.min, (nonVE) P less than 0.02. Phosphate transport (Jp) in the PST from VE animals was also depressed: JP = 1.58 +/- 0.10 (VE) vs. 2.62 +/- 0.47 pmol/mm.min, (nonVE) P less than 0.05. Similar results were obtained with TPTX animals. In the PCT from VE animals, Jv was decreased (0.49 +/- 0.10 (VE) vs. 0.97 +/- 0.14 nl/mm.min, (nonVE) P less than 0.02), but JP was not affected significantly. Transport inhibition was stable over approximately 90 min of perfusion. In the brush border vesicle studies, sodium-dependent phosphate transport was inhibited compared with that in control animals, at the 9-, 30-, and 60-s time points. These findings indicate that the inhibition of renal ionic transport by VE occurs in both PCT and PST and is, in part, the result of a direct effect of VE on tubular transport mechanisms.

Authors

T O Pitts, J A McGowan, T C Chen, M Silverman, M E Rose, J B Puschett

×

Full Text PDF

Download PDF (1.40 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts