Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Transport kinetics of amino acids across the resting human leg.
K Lundholm, … , E Edén, A C Möller-Loswick
K Lundholm, … , E Edén, A C Möller-Loswick
Published September 1, 1987
Citation Information: J Clin Invest. 1987;80(3):763-771. https://doi.org/10.1172/JCI113132.
View: Text | PDF
Research Article

Transport kinetics of amino acids across the resting human leg.

  • Text
  • PDF
Abstract

Flux rates of amino acids were measured across the leg after an overnight fast in resting human volunteers. A balanced amino acid solution was, after a primed infusion, continuously infused for 2 h at each of three step-wise and increasing rates corresponding to 8.3, 16.7, 33.2 mg N/kg per h that were equivalent to 0.2, 0.4, 0.8 g N/kg per d. Flux of amino acids across the leg was compared with the flux of glucose, glycerol, lactate, free fatty acids, and oxygen. The size of the muscular tissue pool of amino acids was measured. Whole body amino acid oxidation was estimated by means of the continuous infusion of a 14C-labeled mixture of amino acids. Arterial steady state levels were obtained for most amino acids within 30 to 45 min after the primed constant infusion. Leg flux of amino acids switched from a net efflux after an overnight fast to a balanced flux between infusion rates corresponding to 0.2-0.4 g N/kg per d. At 0.8 g N/kg per d essentially all amino acids showed uptake. The infusion of amino acids stimulated leg uptake of glucose and lactate production and decreased FFA release. Oxygen uptake and leg blood flow increased significantly with increased infusion of amino acids. There was significant variability in transport rate among individual amino acids. Branched chain amino acids showed rapid transport and methionine slow transport rate. Only small changes in the muscle tissue concentration of certain amino acids were registered after 6 h of amino acid infusion despite uptake for several hours. When amino acids were infused at a rate corresponding to 0.8 g N/kg per d, the leg uptake of amino acids was 6% and the simultaneous whole body oxidation of infused amino acids was approximately 10%. Net uptake of leucine across the leg per hour was 62% of the muscle pool of free leucine when amino acids were infused at a rate corresponding to 0.4 g N/kg per d. Multiple regression analysis showed that the arterial concentration of an amino acid was the most important factor for uptake, more so than insulin concentration and blood flow. It is concluded that leg exchange of amino acids is large enough to rapidly change the pool size of the amino acids in skeletal muscle, if not counter-regulated by changes in rates of protein synthesis and degradation. Estimates of the capacity for protein synthesis and transfer RNA acceptor sites in muscles agree in order of magnitude with the net uptake of amino acids at high infusion rates of amino acids. Therefore, measurements of the balance of tyrosine, phenylalanine, and particularly methionine at steady state may reflect net balance of proteins across skeletal muscles even in short-time experiments.

Authors

K Lundholm, K Bennegård, H Zachrisson, F Lundgren, E Edén, A C Möller-Loswick

×

Full Text PDF

Download PDF (1.50 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts