Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Ischemia induces surface membrane dysfunction. Mechanism of altered Na+-dependent glucose transport.
B A Molitoris, R Kinne
B A Molitoris, R Kinne
Published September 1, 1987
Citation Information: J Clin Invest. 1987;80(3):647-654. https://doi.org/10.1172/JCI113117.
View: Text | PDF
Research Article

Ischemia induces surface membrane dysfunction. Mechanism of altered Na+-dependent glucose transport.

  • Text
  • PDF
Abstract

Reversible ischemia reduced renal cortical brush border membrane (BBM) Na+-dependent D-glucose uptake (336 +/- 31 vs. 138 +/- 30 pmol/mg per 2 s, P less than 0.01) but had no effect on Na+-independent glucose or Na+-dependent L-alanine uptake. The effect on D-glucose uptake was present after only 15 min of ischemia and was due to a reduction in maximum velocity (1913 +/- 251 vs. 999 +/- 130 pmol/mg per 2 s; P less than 0.01). This reduction was not due to more rapid dissipation of the Na+ gradient, altered sidedness of the vesicles, or an alteration in membrane potential. Ischemia did, however, reduce the BBM sphingomyelin-to-phosphatidylcholine (SPH/PC) and cholesterol-to-phospholipid ratios and the number of specific high-affinity Na+-dependent phlorizin binding sites (390 +/- 43 vs. 146 +/- 24 pmol/mg; P less than 0.01) without altering the binding dissociation constant (Kd). 20 mM benzyl alcohol also reduced the number of Na+-dependent phlorizin binding sites (418 +/- 65 vs. 117 +/- 46; P less than 0.01) without altering Kd. The reduction in Na+-dependent D-glucose transport correlated with ischemic-induced changes in the BBM SPH/PC and cholesterol-to-phospholipid ratios and membrane fluidity. Taken together these data indicate the cellular site responsible for ischemic-induced reduction in renal cortical transcellular glucose transport is the BBM. We propose the mechanism involves marked alterations in BBM lipids leading to large increases in BBM fluidity which reduces the binding capacity of Na+-dependent glucose carriers. These data indicate that reversible ischemia has profound effects on the surface membrane function of epithelial cells.

Authors

B A Molitoris, R Kinne

×

Full Text PDF

Download PDF (1.61 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts