Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Multipotential phenotypic expression of genes encoding peptide hormones in rat insulinoma cell lines.
J Philippe, … , W L Chick, J F Habener
J Philippe, … , W L Chick, J F Habener
Published February 1, 1987
Citation Information: J Clin Invest. 1987;79(2):351-358. https://doi.org/10.1172/JCI112819.
View: Text | PDF
Research Article Article has an altmetric score of 3

Multipotential phenotypic expression of genes encoding peptide hormones in rat insulinoma cell lines.

  • Text
  • PDF
Abstract

The developmental origin of the four phenotypically distinct hormone-producing islet cells (insulin, glucagon, somatostatin, pancreatic polypeptide) is unclear. To investigate the potential for phenotypic differentiation of islet cells, we prepared several clonal cell lines from a radiation-induced rat islet tumor and analyzed them for insulin, glucagon, and somatostatin gene expression by cDNA hybridization, immunocytochemistry, and radioimmunoassay. We found expression of all three genes in the tumor and in the parental cell line and mixed variable phenotypes in the clonal lines derived from the parental line. We also observed the ectopic expression of the angiotensinogen gene in the tumor and the cell lines. The relative levels of hormonal gene expression differed among the cell lines but remained fixed during continuous passage. The three islet hormone mRNAs were larger compared to the pancreas owing to longer poly(A) tracts. These observations indicate that neoplastic islet cells retain the potential to differentiate into hormone-specific cellular phenotypes and may mimic developmental pathways of the pancreatic islets.

Authors

J Philippe, W L Chick, J F Habener

×

Full Text PDF

Download PDF (2.63 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 2 patents
4 readers on Mendeley
See more details