Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Characterization of human platelet vasopressin receptors.
M Thibonnier, J M Roberts
M Thibonnier, J M Roberts
Published November 1, 1985
Citation Information: J Clin Invest. 1985;76(5):1857-1864. https://doi.org/10.1172/JCI112179.
View: Text | PDF
Research Article Article has an altmetric score of 3

Characterization of human platelet vasopressin receptors.

  • Text
  • PDF
Abstract

Using tritiated arginine-8-vasopressin [3H]AVP, vasopressin-specific binding sites were detected on human platelet membranes. One class of high-affinity binding sites was characterized with an equilibrium dissociation constant of 1.01 +/- 0.06 nM and a maximal binding capacity of 100 +/- 10 fmol/mg of protein (n = 12). Highly significant correlations were found between the relative agonistic (r = 0.87, P = 0.002) or antagonistic (r = 0.99, P = 0.007) vasopressor activities of a series of 13 AVP structural analogues and their relative abilities to inhibit [3H]AVP binding to platelet receptors whereas no such relationship existed when antidiuretic activities were considered (r = 0.28, P = 0.47). AVP did not stimulate cyclic AMP production of human platelets; on the contrary, high AVP concentrations (10(-6) M) inhibited cyclic AMP production measured in basal and prostaglandin E1-stimulated conditions. AVP caused intact platelet aggregation with a half-maximal aggregation (EC50) of 28 +/- 2 nM. This effect was more potently reversed by the specific vascular antagonist d(CH2)5Tyr(Me)AVP (pA2 = 8.10 +/- 0.23) than by the specific renal antagonist d(CH2)5IleuAlaAVP (pA2 = 6.67 +/- 0.12). The pA2 values of these two antagonists in platelets are in close agreement with the pKi values obtained in competition experiments (respectively 8.59 and 6.93) and with pA2 values reported in the literature for their in vivo antivasopressor activity (respectively 8.62 and 6.03). The observation that human platelets bear AVP receptors belonging to the vascular class suggests that platelet receptors can be used to further explore the role of vasopressin in cardiovascular homeostasis.

Authors

M Thibonnier, J M Roberts

×

Full Text PDF

Download PDF (1.55 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 10 patents
6 readers on Mendeley
See more details