Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Long-term control of plasma calcitriol concentration in dogs and humans. Dominant role of plasma calcium concentration in experimental hyperparathyroidism.
H N Hulter, … , R D Toto, J C Peterson
H N Hulter, … , R D Toto, J C Peterson
Published August 1, 1985
Citation Information: J Clin Invest. 1985;76(2):695-702. https://doi.org/10.1172/JCI112023.
View: Text | PDF
Research Article

Long-term control of plasma calcitriol concentration in dogs and humans. Dominant role of plasma calcium concentration in experimental hyperparathyroidism.

  • Text
  • PDF
Abstract

Despite great interest in the elevated circulating levels of calcitriol (1,25-[OH]2D) associated with the clinical syndrome of human primary hyperparathyroidism, the relative potencies of known and potential stimuli/suppressors of long-term calcitriol levels have not been evaluated in either clinical or experimentally induced hyperparathyroid states. Based on reports that aparathyroid animals exhibit suppressed plasma calcitriol concentration and that acute administration of parathyroid hormone (PTH) to both humans and experimental animals or to renal slices in vitro results in increased plasma calcitriol concentration/production rate, it might be predicted that a chronic experimental model of either hypercalcemic primary hyperparathyroidism or hypocalcemic secondary hyperparathyroidism would show increased plasma calcitriol concentration. Chronic alterations in plasma calcium concentration have not been implicated as modulating calcitriol levels in any species. Accordingly, we investigated the long-term response of plasma calcitriol concentration in states of sustained experimental primary and secondary hyperparathyroidism. Intact dogs (group I) undergoing continuous intravenous PTH infusion for 12 d developed sustained hypercalcemia and hypophosphatemia, and plasma calcitriol concentration decreased from 23 +/- 3 to 14 +/- 3 pg/ml (P less than 0.01). Subsequent chelator (EGTA)-induced chronic normalization of hypercalcemia during ongoing PTH infusion resulted in a large and sustained increase in plasma calcitriol concentration to supernormal levels, reversible during subsequent cessation of chelator infusion. In additional intact dogs (group II), chronic chelator-induced hypocalcemic secondary hyperparathyroidism resulted in a sustained increase in plasma calcitriol concentration despite hyperphosphatemia. In normal human subjects undergoing a 12-13-d continuous intravenous PTH infusion to result in sustained moderate hypercalcemia (12.0 +/- 0.2 mg/100 ml) and hypophosphatemia, plasma calcitriol concentration decreased significantly (P less than 0.01) as in group I dogs and was followed by reversal to normal levels in a recovery period. The present results provide strong evidence in both humans and dogs that during experimentally induced chronic PTH excess, alterations in plasma calcium concentration dictate the directional response of circulating calcitriol concentrations. The long-term potency of plasma calcium concentration as a modulator of calcitriol metabolism is sufficient to override opposing modulation by plasma phosphorus concentration and PTH.

Authors

H N Hulter, B P Halloran, R D Toto, J C Peterson

×

Full Text PDF

Download PDF (1.40 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts