Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
Article has an altmetric score of 3

See more details

Referenced in 1 policy sources
17 readers on Mendeley
  • Article usage
  • Citations to this article (115)

Advertisement

Research Article Free access | 10.1172/JCI112011

Influence of obesity on the metabolism of apolipoprotein B in humans.

G Egusa, W F Beltz, S M Grundy, and B V Howard

Find articles by Egusa, G. in: PubMed | Google Scholar

Find articles by Beltz, W. in: PubMed | Google Scholar

Find articles by Grundy, S. in: PubMed | Google Scholar

Find articles by Howard, B. in: PubMed | Google Scholar

Published August 1, 1985 - More info

Published in Volume 76, Issue 2 on August 1, 1985
J Clin Invest. 1985;76(2):596–603. https://doi.org/10.1172/JCI112011.
© 1985 The American Society for Clinical Investigation
Published August 1, 1985 - Version history
View PDF
Abstract

The influence of obesity on the metabolism of apolipoprotein B (apo B) in very low density lipoprotein (VLDL), intermediate density lipoprotein (IDL), and low density lipoprotein (LDL) was investigated in nine obese and seven nonobese Pima Indian men. Kinetics of VLDL-apo B (VLDL-B), VLDL-triglycerides, IDL-B and LDL-B were studied after injection of autologous 131I-VLDL, [3H]glycerol, and autologous 125I-LDL. Specific activities were measured in apo B isolated from all lipoprotein fractions and in triglyceride isolated from VLDL. Transport rates and fractional catabolic rates for apo B in VLDL, IDL, and LDL and triglyceride in VLDL were determined by multicompartmental analysis. This method also allowed the estimation of rates of interconversions of the lipoproteins. The two groups had similar mean ages and heights, but the obese group had a higher total body weight (131 +/- 14 vs. 66 +/- 3 kg +/- SEM) and fat free mass (81 +/- 5 vs. 54 +/- 2 kg) than lean controls. Plasma total lipids were similar for the two groups, and apo B concentrations in VLDL, IDL, and LDL were similar in obese and lean subjects. In spite of similarity in concentrations, obese subjects compared to lean subjects had higher synthetic rates of VLDL-triglyceride (62.6 +/- 15 vs. 26.2 +/- 7 g/d, P less than 0.01), VLDL-B (2,241 +/- 215 vs. 1,113 +/- 72 mg/d, P less than 0.001), and LDL-B (1,234 +/- 87 vs. 802 +/- 83 mg/d, P less than 0.01). Furthermore, in obese subjects, significantly higher amounts of VLDL-B were removed from the circulation without conversion to LDL-B (1,078 +/- 159 vs. 460 +/- 34 mg/d, P less than 0.05), and obese subjects had a higher fractional catabolic rate for LDL than the lean controls (0.48 +/- 0.02 vs. 0.41 +/- 0.02 d-1, P less than 0.05). The rapid catabolism of LDL and increased metabolism of VLDL without conversion to LDL in obese individuals may be mechanisms for maintenance of LDL at normal levels despite the overproduction of its precursor.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 596
page 596
icon of scanned page 597
page 597
icon of scanned page 598
page 598
icon of scanned page 599
page 599
icon of scanned page 600
page 600
icon of scanned page 601
page 601
icon of scanned page 602
page 602
icon of scanned page 603
page 603
Version history
  • Version 1 (August 1, 1985): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

Article has an altmetric score of 3
  • Article usage
  • Citations to this article (115)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 1 policy sources
17 readers on Mendeley
See more details