Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Phorbol diesters stimulate the development of an early murine progenitor cell. The burst-forming unit-megakaryocyte.
M W Long, … , C H Heffner, L A Boxer
M W Long, … , C H Heffner, L A Boxer
Published August 1, 1985
Citation Information: J Clin Invest. 1985;76(2):431-438. https://doi.org/10.1172/JCI111990.
View: Text | PDF
Research Article

Phorbol diesters stimulate the development of an early murine progenitor cell. The burst-forming unit-megakaryocyte.

  • Text
  • PDF
Abstract

When murine (C57BL/6) bone marrow cells are cultivated with WEHI-3 conditioned media, a source of megakaryocyte-colony-stimulating activity (Mk-CSA), and phorbol myristate acetate (PMA), a previously undetected population of megakaryocyte (Mk) progenitor cells is observed. These new Mk colonies are reminiscent of erythroid bursts, in that they contain large numbers (40-500) of Mk and multiple foci (2-7) of development. These burst-forming units, Mk (BFU-Mk), are defined as having greater than or equal to 42 cells/colony and, at least, three foci of Mk development (colonies grown in soft agar cultures, all studies done at limiting dilutions; colonies detected by acetylcholinesterase [ACh-E] staining). CFU-Mk and BFU-Mk require two activities for optimal growth: Mk-CSA and PMA. However, the BFU-Mk require a tenfold greater concentration of PMA for optimal development (10(-6) vs. 10(-7) M). BFU-Mk detection is linear (over a range of 25-100 X 10(3) cells/ml), with the regression line passing through the origin. Bone marrow frequencies of these two progenitor cells are CFU-Mk, 36.7 +/- 2.5, and BFU-Mk, 7.3 +/- 0.7 per 10(5) total nucleated cells (mean +/- SEM; n = 28). The BFU-Mk have a restricted velocity sedimentation range (3.3-4.5 mmh-1 vs. 3.3-6.8 mmh-1 for CFU-Mk). Modal buoyant densities are 1.068 +/- 0.0002 and 1.070 +/- 0.002 for BFU-Mk and CFU-Mk, respectively. Thus, these cells are found among the smallest and less dense of the Mk progenitors, and are not clumps or clusters of CFU-Mk. Kinetic analysis indicates that CFU-Mk require 5-7 d for optimal growth, whereas BFU-Mk require 10-12 d. Examination of the proliferative potential (cells per colony) shows 19.3 +/- 1.5 cells per colony (n = 246 colonies) for day 10 CFU-Mk, vs. 118 +/- 6.0 for day 10 BFU-Mk (n = 163). Analysis of the cellularity/subcolony within each burst indicates 37.0 +/- 2.1 (n = 146) Mk/colony and 3.9 +/- 0.1 subcolonies/burst (n = 100). Finally, greater than 90% of the BFU-Mk contain only ACh-E positive cells, indicating that these are not mixed colonies. These results indicate that the BFU-Mk, compared with the CFU-Mk, require an increased amount of stimulation in order to differentiate, show delayed in vitro development, and have a higher proliferative potential. These data are consistent with the hypothesis that these cells are early progenitor cells in the Mk lineage that antedate the CFU-Mk.

Authors

M W Long, L L Gragowski, C H Heffner, L A Boxer

×

Full Text PDF

Download PDF (2.23 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts