Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Oxygen-independent intracellular and oxygen-dependent extracellular killing of Escherichia coli S15 by human polymorphonuclear leukocytes.
J Weiss, … , M Victor, P Elsbach
J Weiss, … , M Victor, P Elsbach
Published July 1, 1985
Citation Information: J Clin Invest. 1985;76(1):206-212. https://doi.org/10.1172/JCI111947.
View: Text | PDF
Research Article

Oxygen-independent intracellular and oxygen-dependent extracellular killing of Escherichia coli S15 by human polymorphonuclear leukocytes.

  • Text
  • PDF
Abstract

Effective killing of bacteria by polymorphonuclear leukocytes (PMN) is generally assumed to require intracellular sequestration and, depending on the bacterial species, can be both O2-dependent or O2-independent. Killing of several strains of Salmonella typhimurium and Escherichia coli by rabbit PMN does not require O2 and is apparently due to a granule-associated bactericidal/permeability-increasing protein (BPI) present in rabbit and human PMN. In this study we examined the O2 dependence of the killing of E. coli (S15) by human PMN. Ingested and noningested E. coli were separated by centrifugation after incubation with PMN in room air or under N2. In the presence of heat-treated serum approximately 50% of E. coli (10 bacteria/PMN) were taken up by PMN and rapidly (5-15 min) killed both in room air and under N2. The remaining extracellular bacteria (approximately 50%) were killed during 30-60 min of incubation in room air but not under N2. When uptake of E. coli by PMN was increased to approximately 80% by the use of C6-depleted serum (retaining heat-labile opsonins), bacterial survival under N2 was reduced from 54 +/- 7.6% to 13 +/- 5.5%. PMN from a patient with chronic granulomatous disease killed PMN-associated but not extracellular E. coli. BPI was detected, by indirect immunofluorescence, on the surface of PMN-associated E. coli within 5 min of incubation of E. coli with PMN both in room air and under N2. In contrast, at no time was BPI detected on the surface of extracellular E. coli, indicating that the non-PMN-associated E. coli had not been previously ingested. Thus, killing of ingested E. coli S15 by human as well as rabbit PMN does not require O2 and appears to be BPI-mediated. However, when ingestion is limited, extracellular bacteria can also be killed but principally by O2-dependent mechanisms.

Authors

J Weiss, L Kao, M Victor, P Elsbach

×

Full Text PDF

Download PDF (1.50 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts