Abstract

It has been postulated that thrombin binds to endothelial cells through, at least in part, cell surface glycosaminoglycans such as heparan sulfate, which could serve as antithrombin cofactor on the endothelium. In the present study, we have directly evaluated the binding of 125I-labeled bovine thrombin to cultured porcine aortic endothelial cells. The thrombin binding to the cell surface was rapid, reversible, and displaced by enzymatically inactive diisopropylphosphoryl-thrombin. The concentration of thrombin at half-maximal binding was approximately 20 nM. Both specific and nonspecific binding of 125I-thrombin to the endothelial cell surface was partially inhibited in the presence of protamine sulfate, after the removal of cell surface heparan sulfate by the treatment of cells with crude Flavobacterium heparinum enzyme or purified heparitinase. The binding as a function of the concentration of thrombin revealed that the maximal amount of specific binding was reduced by approximately 50% with little alteration in binding affinity by these enzymatic treatments. The reversibility and active-site independence as well as the rate of the binding did not change after heparitinase treatment. Whereas removal of chondroitin sulfates by chondroitin ABC lyase treatment of cells did not affect the binding, identical enzymatic treatments of [35S]sulfate-labeled cells showed that either heparan sulfate or chondroitin sulfate was selectively and completely removed from the cell surface by heparitinase or chondroitin ABC lyase treatment, respectively. Furthermore, proteolysis of cell surface proteins by the purified glycosaminoglycan lyases was excluded by the identical enzymatic treatments of [3H]leucine-labeled or cell surface radioiodinated cells. Our results provide the first direct evidence that heparan sulfate on the cell surface is involved in the high-affinity, active site-independent thrombin binding by endothelial cells, and also suggest the presence of thrombin-binding sites that are not directly related to heparan sulfate.

Authors

K Shimada, T Ozawa

×

Other pages: