Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Vitamin D status regulates 25-hydroxyvitamin D3-1 alpha-hydroxylase and its responsiveness to parathyroid hormone in the chick.
B E Booth, … , H C Tsai, R C Morris Jr
B E Booth, … , H C Tsai, R C Morris Jr
Published January 1, 1985
Citation Information: J Clin Invest. 1985;75(1):155-161. https://doi.org/10.1172/JCI111668.
View: Text | PDF
Research Article

Vitamin D status regulates 25-hydroxyvitamin D3-1 alpha-hydroxylase and its responsiveness to parathyroid hormone in the chick.

  • Text
  • PDF
Abstract

We asked this question: Under normal or near-normal metabolic conditions, does the prevailing normal or near-normal vitamin D status dampen the activity of 25-hydroxyvitamin-D3-1 alpha-hydroxylase (1 alpha-hydroxylase) such that it determines not only its "basal" activity but also its responsiveness to stimulation by increased circulating concentrations of parathyroid hormone (PTH)? To answer this question, we measured the activity of 1 alpha-hydroxylase in chicks, with and without administration of PTH, immediately before and during deprivation of vitamin D. Before deprivation of vitamin D, 1 alpha-hydroxylase activity increased only slightly with administration of PTH. With deprivation of vitamin D for 5 and 10 d, while the plasma concentrations of calcium and phosphorus persisted normal and unchanged, 1 alpha-hydroxylase activity not only increased progressively but also became sharply and increasingly responsive to stimulation by administration of PTH. But after 15 d of vitamin D deprivation, and the supervention of hypocalcemia, 1 alpha-hydroxylase activity was not further increased by the administration of PTH. With deprivation of vitamin D, the progressive increase in 1 alpha-hydroxylase correlated inversely with circulating levels of 1,25-dihydroxyvitamin D (1,25-[OH]2D), and the decreasing calcemic response to PTH correlated inversely with the responsiveness of 1 alpha-hydroxylase to PTH (in chicks deprived of vitamin D for 1-10 d). These results demonstrate that: under normal metabolic conditions, the normal vitamin D status regulates the activity of 1 alpha-hydroxylase so as to dampen both its "basal" activity and its responsiveness to stimulation by PTH; and vitamin D deprivation insufficient to cause hypocalcemia enhances both the "basal" activity of 1 alpha-hydroxylase and its responsiveness to stimulation by PTH. The results suggest that the normal dampening of 1 alpha-hydroxylase and both of the demonstrated enhancements of its activity are mediated by normal and reduced levels of circulating 1,25-(OH)2D, respectively. The finding that PTH fails to further stimulate 1 alpha-hydroxylase when vitamin D deprivation is sufficient in duration to cause hypocalcemia confirms the findings of other investigators and again demonstrates that observations made during abnormal metabolic circumstances may bear little on the physiologic regulation of 1 alpha-hydroxylase under normal or near-normal metabolic circumstances.

Authors

B E Booth, H C Tsai, R C Morris Jr

×

Full Text PDF

Download PDF (1.25 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts