Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Mechanism of alteration of sodium potassium pump of erythrocytes from patients with chronic renal failure.
J T Cheng, … , T Kahn, D M Kaji
J T Cheng, … , T Kahn, D M Kaji
Published November 1, 1984
Citation Information: J Clin Invest. 1984;74(5):1811-1820. https://doi.org/10.1172/JCI111600.
View: Text | PDF
Research Article

Mechanism of alteration of sodium potassium pump of erythrocytes from patients with chronic renal failure.

  • Text
  • PDF
Abstract

We examined intracellular electrolytes, K influx, and [3H]ouabain-binding capacity of erythrocytes from 32 normal subjects and 45 patients with end-stage renal failure on dialysis, including 16 with high intracellular Na (mean 17.3 +/- 3.9 mmol/liter cell water). The [3H]ouabain-binding capacity of erythrocytes with high cell Na was markedly reduced as compared with that of erythrocytes from normal subjects (274 +/- 52 vs. 455 +/- 59 sites/cell, P less than 0.001). The mean serum creatinine was higher in the uremic group with high cell Na. There was a significant linear correlation between intracellular Na and [3H]ouabain-binding in both normal and uremic subjects. Cross-incubation of normal cells with uremic plasma for 24 h failed to reduce [3H]ouabain-binding capacity of normal cells. In spite of a substantial increase in cell Na, K pump influx was not higher in uremic erythrocytes with high cell Na. When intracellular Na was altered with nystatin (cell Na equal to 120 mmol/liter cell water in both groups), K pump influx was proportional to the number of Na-K pump sites so that the ion turnover rate per pump site was similar in the two groups. Uremic plasma failed to depress K pump influx of normal erythrocytes. The passive net influx of Na in uremic cells with high intracellular Na was not different from that observed in erythrocytes from normal subjects. When erythrocytes were separated by age on Percoll density gradients, the number of Na-K pump sites of the youngest uremic cells was significantly lower than that of the youngest normal cells, suggesting that decreased synthesis of Na-K pump sites, rather than accelerated loss of Na-K pump sites during aging, was responsible for the decrease in [3H]ouabain-binding capacity of erythrocytes from uremic subjects. Taken together, these findings suggest that a decrease in the number of Na-K pump sites plays a major role in the abnormality of Na-K pump of erythrocytes from patients with chronic renal failure.

Authors

J T Cheng, T Kahn, D M Kaji

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 163 5
PDF 57 16
Scanned page 351 1
Citation downloads 56 0
Totals 627 22
Total Views 649
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts