Thrombospondin (TSP), the major alpha-granule protein of human platelets, binds to the activated platelet surface upon platelet stimulation. TSP has hemagglutinating (lectin-like) activity and forms a specific complex with fibrinogen. Based on these observations, it was postulated that the interaction of TSP and fibrinogen on the activated platelet surface may be an important step in the platelet aggregation process. To test this hypothesis, monospecific, affinity-purified anti-TSP Fab fragments were prepared and their effects on platelet aggregation and platelet fibrinogen binding were studied. Anti-TSP Fab caused significant interference with thrombin- and collagen-induced platelet aggregation, as monitored by both turbidometric aggregometry and particle counting measuring the disappearance of single platelets. Phase-contrast microscopy revealed that anti-TSP Fab caused a marked decrease in platelet macroaggregates and an increase in microaggregates and nonaggregated single platelets. Anti-TSP Fab did not affect the initial phase of ADP-induced platelet aggregation but caused rapid platelet disaggregation with the abolition of the secondary phase of aggregation. The effect of anti-TSP Fab was not mediated by a direct inhibition of platelet secretion. The effect of anti-TSP Fab on specific binding of labeled fibrinogen to thrombin-stimulated platelets was also studied. Anti-TSP Fab caused a marked decrease in the affinity of fibrinogen binding to the receptors on the activated platelet surface. Kinetic analyses revealed significant displacement of labeled fibrinogen by unlabeled fibrinogen in the presence of anti-TSP Fab, suggesting that TSP serves to stabilize fibrinogen binding to the activated platelet surface and reinforces the strength of interplatelet interactions. It is proposed that platelet aggregation is a dynamic, multistep process, governed initially by the platelet membrane glycoprotein IIb/IIIa-fibrinogen interaction, with the TSP-fibrinogen interaction playing an important role in determining the size and reversibility of platelet aggregates.
L L Leung