We studied the erythrocyte Na,K-pump in chronically hemodialyzed uremic patients, immediately before and after a 4-h period of hemodialysis. Using [3H]ouabain as a probe, the number of Na,K-pump units per erythrocyte did not differ in uremic and control subjects, and hemodialysis had no acute effect on this parameter. In contrast, in these same cells the mean level of Na,K-pump-mediated 86Rb transport was 30% lower in predialysis uremic patients than in controls, and this diminution in the rate of 86Rb transport per pump unit was improved after 4 h of hemodialysis in 17 of 18 subjects. The results of in vitro incubation of normal cells with pre- and post-dialysis sera from uremic patients suggested that a serum factor is responsible for the observed inhibition of Na,K-pump activity. Changes in cell Na concentration during dialysis did not appear to be responsible for the increased rate of Na,K-pump turnover after hemodialysis. However, there was a significant correlation between the extent of rise in pump-mediated 86Rb uptake and the weight loss that occurred during dialysis. We conclude that the ion transport turnover rate of the erythrocyte Na,K-pump is impaired in uremia by a nonouabain like circulating factor. This factor, whose activity is diminished acutely by hemodialysis, may play an important role in the systemic manifestations of the uremic syndrome, and could be an important endogenous regulator of the Na,K-ATPase.
H Izumo, S Izumo, M DeLuise, J S Flier
Usage data is cumulative from December 2023 through December 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 147 | 1 |
80 | 15 | |
Scanned page | 291 | 3 |
Citation downloads | 30 | 0 |
Totals | 548 | 19 |
Total Views | 567 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.