Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Reactions of immunoglobulin G-binding ligands with platelets and platelet-associated immunoglobulin G.
W F Rosse, … , D V Devine, R Ware
W F Rosse, … , D V Devine, R Ware
Published February 1, 1984
Citation Information: J Clin Invest. 1984;73(2):489-496. https://doi.org/10.1172/JCI111235.
View: Text | PDF
Research Article

Reactions of immunoglobulin G-binding ligands with platelets and platelet-associated immunoglobulin G.

  • Text
  • PDF
Abstract

Immunoglobulin G (IgG) bound to platelets is usually detected by one of two general methods: binding of labeled anti-IgG or consumption of anti-IgG. The latter method gives, in general, values 5-10-fold greater than the former under the same conditions. To investigate these discrepancies, we have compared the detection of platelet-bound IgG by a labeled anti-IgG binding assay and by a quantitative antiglobulin consumption test using the same antibodies. The interaction of 125I-labeled monoclonal anti-IgG or polyclonal anti-IgG with washed and IgG-coated platelets was studied. The binding of these ligands to washed normal platelets was largely (50-80%) nonspecific; the binding was not saturable and was only partially inhibitable by excess unlabeled anti-IgG. The binding of anti-IgG to platelets coated with anti-PIA1, a platelet-specific IgG antibody, appeared to be saturable and inhibitable; the dissociation constant (KD) of this IgG-anti-IgG reaction was 4.9 X 10(-9) for monoclonal and 1.4 X 10(-7) for polyclonal anti-IgG. The ratio of sites present on the membrane (determined by 131I-labeled anti-PIA1) to the number of binding sites for anti-IgG determined by Scatchard analysis was 0.53 for monoclonal anti-IgG and 1.3 for polyclonal anti-IgG. The binding of monoclonal anti-IgG to platelet-bound immune complexes or IgG aggregates appeared to be complex. 131I-Labeled IgG was affixed to platelets and was detected by three tests: direct binding of radiolabeled monoclonal anti-IgG and quantitative antiglobulin consumption (QAC) tests, which were quantitated either by measuring directly the amount of radiolabeled anti-IgG consumed from fluid phase (direct QAC), or indirectly by reference to a calibration curve relating the consumption of anti-IgG by known amounts of fluid-phase, non-immune IgG (indirect QAC). The amount of platelet-bound IgG detected by the direct binding of 125I-labeled monoclonal anti-IgG and by the direct QAC approximated that known to be bound to the platelet. The results of the indirect QAC test were 10-fold greater. The discrepancy appears to be due to the fact that there is a difference between the IgG-anti-IgG interaction when IgG is bound to a platelet and when it is in solution or bound to plastic nonspecifically or specifically. This difference results in a falsely high value for platelet-bound IgG when fluid-phase or plastic-bound IgG is used to calibrate the antiglobulin consumption test.

Authors

W F Rosse, D V Devine, R Ware

×

Full Text PDF

Download PDF (1.36 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts