Studies were undertaken to define the pattern of proximal tubular bicarbonate reabsorption and its relation to tubular and capillary PCO2 in rats with chronic metabolic alkalosis (CMA). CMA was induced by administering furosemide to rats ingesting a low electrolyte diet supplemented with NaHCO3 and KHCO3. Proximal tubular bicarbonate reabsorption and PCO2 were measured in CMA rats either 4-7 or 11-14 d after furosemide injection, in order to study a wide range of filtered bicarbonate loads. A group of nine age-matched control animals, fed the same diet but not given furosemide, was studied for comparison. In a third group of controls, the filtered load of bicarbonate was varied over the same range as in the CMA rats by plasma infusion and aortic constriction. The CMA rats had significant alkalemia and hypokalemia (4-7 d: pH 7.58, HCO3 38.3 meq/liter, K+ 2.1 meq/liter; 11-14 d: pH 7.54, HCO3 38.1 meq/liter, K+ 2.5 meq/liter). Nonetheless, proximal bicarbonate reabsorption was not significantly different from that seen in control rats at any given load of filtered bicarbonate (from 250 to 1,300 pmol/min). In both control and CMA rats, 83-85% of the filtered bicarbonate was reabsorbed by the end of the accessible proximal tubule. These observations indicate that proximal bicarbonate reabsorption is determined primarily by the filtered load in chronic metabolic alkalosis. When single nephron glomerular filtration rate (SNGFR) is reduced by volume depletion in the early postfurosemide period, the filtered load and the rate of proximal bicarbonate reabsorption remain at or below control levels, maintaining metabolic alkalosis. In the late postfurosemide period, however, SNGFR returned to control levels in some instances. In these animals, both the filtered load and rate of proximal reabsorption were increased above the highest levels seen in control animals. The PCO2 gradient between the peritubular capillaries and arterial blood (Pc-Art) was significantly higher in CMA than in control, even though the rate of proximal bicarbonate reabsorption did not differ. Thus, proximal bicarbonate reabsorption did not appear to be the primary determinant of Pc-Art PCO2. PCO2 in the early proximal (EP) tubule was significantly higher than in either the late proximal (LP) tubule or peritubular capillaries in both control and CMA rats. The EP-LP PCO2 gradient correlated directly with proximal bicarbonate reabsorption (P less than 0.05). The small elevation in PCO2 in EP may be related to CO2 generated at this site in the process of bicarbonate reabsorption.
D A Maddox, F J Gennari
Usage data is cumulative from December 2023 through December 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 121 | 0 |
91 | 20 | |
Scanned page | 317 | 10 |
Citation downloads | 32 | 0 |
Totals | 561 | 30 |
Total Views | 591 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.