Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Role of complement and polymorphonuclear cells in demethylchlortetracycline-induced phototoxicity in guinea pigs. Inhibition by decomplementation in vivo.
H W Lim, … , H Novotny, I Gigli
H W Lim, … , H Novotny, I Gigli
Published October 1, 1983
Citation Information: J Clin Invest. 1983;72(4):1326-1335. https://doi.org/10.1172/JCI111088.
View: Text | PDF
Research Article

Role of complement and polymorphonuclear cells in demethylchlortetracycline-induced phototoxicity in guinea pigs. Inhibition by decomplementation in vivo.

  • Text
  • PDF
Abstract

In this study, demethylchlortetracycline was used as a prototype of exogenous phototoxic substances. In vitro, exposure of serum containing demethylchlortetracycline to ultraviolet-A irradiation resulted in the diminution of total complement hemolytic activity and C4, C2, C3, and C5 activities. In addition, chemotactic activity for human polymorphonuclear cells was generated, which was thermostable and antigenically related to human C5 but not human C3. In vivo, phototoxic lesions were induced in guinea pigs upon intradermal injections of demethylchlortetracycline solution, followed by ultraviolet-A irradiation. On a scale of 0-3+, the animals developed a maximal response of 2.5 at 20 h. This clinical response was associated with cellular infiltrate in the dermis, consisting of 29 +/- 2% of neutrophils at 24 h. The participation of the polymorphonuclear cells was evaluated in guinea pigs rendered neutropenic by treatment with cyclophosphamide. In these guinea pigs, demethylchlortetracycline and ultraviolet-A induced a maximal response of 0.75 +/- 0.5, which was associated histologically with 1.2 +/- 0.5% neutrophils in the dermis. The role of complement in this process was studied in guinea pigs congenitally deficient in C4, and in guinea pigs decomplemented by treatment with cobra venom factor. In contrast to normal guinea pigs, C4-deficient animals exhibited a maximal reaction of 0.83 +/- 0.16 at 6 h, which subsided within 24 h. Cobra venom factor-treated guinea pigs developed a maximal response of 0.5 at 0.5 and at 6 h. These clinical changes were associated with the development of an increased vascular permeability, as demonstrated by studies using guinea pigs injected intravenously with Evans blue solution. In animals with a normal complement system, there was intense localized bluing at the sites of phototoxic lesion. In contrast, only minimal bluing was observed in decomplemented guinea pigs. These data indicate that a normal number of polymorphonuclear cells and an intact complement system are required for the full development of demethylchlortetracycline-induced phototoxic lesions.

Authors

H W Lim, H Novotny, I Gigli

×

Full Text PDF

Download PDF (2.00 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts