Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Mucolipidosis II and III. The genetic relationships between two disorders of lysosomal enzyme biosynthesis.
O T Mueller, … , A L Miller, T B Shows
O T Mueller, … , A L Miller, T B Shows
Published September 1, 1983
Citation Information: J Clin Invest. 1983;72(3):1016-1023. https://doi.org/10.1172/JCI111025.
View: Text | PDF
Research Article

Mucolipidosis II and III. The genetic relationships between two disorders of lysosomal enzyme biosynthesis.

  • Text
  • PDF
Abstract

The genetic relationships between the multiple variants of mucolipidosis II (I-cell disease) and mucolipidosis III (pseudo-Hurler polydystrophy) were investigated with a sensitive genetic complementation analysis procedure. These clinically distinct disorders have defects in the synthesis of a recognition marker necessary for the intracellular transport of acid hydrolases into lysosomes. Both disorders are associated with an inherited deficiency of a uridine diphosphate-N-acetyl-glucosamine: lysosomal enzyme precursor N-acetyl-glucosamine-phosphate transferase activity. We had previously shown that both disorders are genetically heterogeneous. Complementation analysis between mucolipidosis II and III fibroblasts indicated an identity of mucolipidosis II with one of the three mucolipidosis III complementation groups (ML IIIA), suggesting a close genetic relationship between these groups. The presence of several instances of complementation within this group suggested an intragenic complementation mechanism. Genetic complementation in heterokaryons resulted in increases in N-acetyl-glucosamine-phosphate transferase activity, as well as in the correction of lysosomal enzyme transport. This resulted in increases in the intracellular levels of several lysosomal enzymes and in the correction of the abnormal electrophoretic mobility pattern of intracellular beta-hexosaminidase. The findings demonstrate that a high degree of genetic heterogeneity exists within these disorders. N-acetyl-glucosamine-phosphate transferase is apparently a multicomponent enzyme with a key role in the biosynthesis and targeting of lysosomal enzymes.

Authors

O T Mueller, N K Honey, L E Little, A L Miller, T B Shows

×

Full Text PDF

Download PDF (1.30 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts