Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Citations to this article

Insulin resistance in uremia. Characterization of insulin action, binding, and processing in isolated hepatocytes from chronic uremic rats.
J M Kauffman, J F Caro
J M Kauffman, J F Caro
Published March 1, 1983
Citation Information: J Clin Invest. 1983;71(3):698-708. https://doi.org/10.1172/JCI110816.
View: Text | PDF | Correction | Correction
Research Article

Insulin resistance in uremia. Characterization of insulin action, binding, and processing in isolated hepatocytes from chronic uremic rats.

  • Text
  • PDF
Abstract

We have developed a model in the rat that leads to a predictable degree of severe uremia to study the role of the liver in the insulin-resistant state of uremia. The uremic animals were euglycemic and had increased serum immunoreactive insulin when compared with their pair-fed controls. Insulin action, binding, internalization, and degradation were characterized in freshly isolated hepatocytes from uremic animals, sham-operated pair-fed, and ad lib.-fed controls. The basal rate of aminoisobutyric acid (AIB) uptake was increased in hepatocytes from both uremic and pair-fed control rats. However, while hepatocytes from uremic animals were refractory to insulin with regard to AIB uptake, there was no significant difference in the absolute increment above basal AIB uptake by hepatocytes from pair-fed and fed ad lib. animals at any insulin concentration studied. 125I-Insulin binding at 24 degrees C was higher in hepatocytes from uremic rats at every insulin concentration studied when compared with fed ad lib. controls. The time course of 125I-insulin binding to the cell and to the fractions that were membrane bound or internalized were studied at 37 degrees C. An increase in membrane-bound 125I-insulin at 37 degrees C was present also in hepatocytes from uremic animals. The same fraction of membrane-bound 125I-insulin was internalized in hepatocytes from all groups of animals. Extracellular and receptor-mediated 125I-insulin degradation at the plasma membrane and after internalization was studied at 37 degrees C by gel chromatography. There was a delayed and decreased rate of 125I-insulin degradation in hepatocytes from uremic rats in the three compartments. We conclude: (a) In chronic uremia the liver is refractory to insulin with regard to AIB uptake. (b) Insulin resistance in uremic rat liver is not due to defects in insulin binding or internalization. (c) Despite the high level of circulating immunoreactive insulin, hepatocytes from uremic rats did not show the expected "down regulation" of their insulin receptors or an increased rate of insulin degradation. These studies further emphasize the primary role of postbinding events in the regulation of insulin binding and degradation. The mechanism as to how the coordinated steps of insulin metabolism in the liver are disrupted in a pathological state is presently unknown.

Authors

J M Kauffman, J F Caro

×

Total citations by year

Year: 2013 2007 2001 1999 1998 1996 1991 1989 1987 1986 1985 1984 1983 Total
Citations: 1 1 1 1 1 1 2 4 2 2 3 4 2 25
Citation information
This citation data is accumulated from CrossRef, which receives citation information from participating publishers, including this journal. Not all publishers participate in CrossRef, so this information is not comprehensive. Additionally, data may not reflect the most current citations to this article, and the data may differ from citation information available from other sources (for example, Google Scholar, Web of Science, and Scopus).

Citations to this article in year 2007 (1)

Title and authors Publication Year
Up-regulation of NPY gene expression in hypothalamus of rats with experimental chronic renal failure
E Sucajtys-Szulc, J Karbowska, Z Kochan, W Wolyniec, M Chmielewski, B Rutkowski, J Swierczynski
Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 2007

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts