Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Evaluation of chloride/bicarbonate. Exchange in the human colon in vivo.
G R Davis, … , C A Santa Ana, J S Fordtran
G R Davis, … , C A Santa Ana, J S Fordtran
Published February 1, 1983
Citation Information: J Clin Invest. 1983;71(2):201-207. https://doi.org/10.1172/JCI110760.
View: Text | PDF
Research Article Article has an altmetric score of 3

Evaluation of chloride/bicarbonate. Exchange in the human colon in vivo.

  • Text
  • PDF
Abstract

During perfusion of a plasma-like solution, colonic absorption rate of chloride was much higher than the secretion rate of bicarbonate (34 vs. 3.5 meq/h, respectively). This might suggest that anion exchange (Cl/HCO3) accounts for only a small fraction of total chloride absorption. However, if the colon absorbs as well as secretes bicarbonate, this reasoning would underestimate the magnitude of the anion exchange. To see if the colon absorbs bicarbonate, we perfused a chloride-free solution (which would eliminate bicarbonate secretion via (Cl/HCO3 exchange) and found that the colon absorbed bicarbonate at a rate of 5.1 meq/h. Calculation of electrochemical gradients and measurement of luminal fluid PCO2 indicated that this bicarbonate absorption was mediated passively in response to electrical gradients, rather than via reversed Cl/HCO3 exchange or acid secretion. The combined results of the plasma-like and chloride-free perfusion experiments suggest Cl/HCO3 exchange at a rate of 8.6 meq/h (the sum of bicarbonate movements, 3.5 and 5.1 meq/h, observed in the two experiments). To obtain a second estimate under different experimental conditions, a choline chloride-choline bicarbonate (sodium-free) solution was perfused; with this solution, chloride and bicarbonate absorption dependent on active sodium transport should be eliminated or markedly reduced, and the magnitude of Cl/HCO3 exchange should be revealed. This experiment suggested a Cl/HCO3 exchange rate of 9.3 meq/h, similar to the first estimate. As chloride was absorbed at a rate of 34 meq/h during perfusion of the plasma-like solution, the Cl/HCO3 exchange provides for approximately one-fourth of total chloride absorption.

Authors

G R Davis, S G Morawski, C A Santa Ana, J S Fordtran

×

Full Text PDF

Download PDF (1.02 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 12 patents
9 readers on Mendeley
See more details