These studies were carried out to investigate the mechanism of neutralization of purified Epstein-Barr virus (EBV) by fresh human serum from normal individuals lacking antibody to the EBV viral capsid (VCA) and nuclear antigens (EBNA). Such individuals thus lack serological evidence of immunity to EBV. Although an enzyme-linked immunosorbent assay (ELISA) with highly purified immobilized EBV detected low levels of IgG antibody reactive with EBV in these normal nonimmune sera, this antibody failed to neutralize EBV in the absence of complement. Studies with depleted sera and mixtures of purified complement proteins at physiologic concentrations showed that the IgG antibody and C1, C4, C2, and C3 of the classical pathway were able to fully neutralize EBV. Mixtures of the purified components of the alternative pathway at physiologic concentrations failed to neutralize purified EBV in the presence or absence of the antibody and the alternative pathway did not potentiate classical pathway-mediated neutralization. No evidence for a requirement for C8 was obtained, precluding lysis as the mechanism of neutralization. Since C3 deposition on the viral surface accompanied classical pathway activation, viral neutralization is most likely secondary to the accumulation of complement protein on the viral surface. A coating of protein on the virus could interfere with attachment to, or penetration of potentially susceptible cells.
Glen R. Nemerow, Fred C. Jensen, Neil R. Cooper
Usage data is cumulative from January 2024 through January 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 149 | 3 |
68 | 28 | |
Scanned page | 401 | 11 |
Citation downloads | 54 | 0 |
Totals | 672 | 42 |
Total Views | 714 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.