Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Hydroxyproline and passive stiffness of pressure-induced hypertrophied kitten myocardium.
J F Williams Jr, … , B Mathew, W P Deiss Jr
J F Williams Jr, … , B Mathew, W P Deiss Jr
Published February 1, 1982
Citation Information: J Clin Invest. 1982;69(2):309-314. https://doi.org/10.1172/JCI110454.
View: Text | PDF
Research Article

Hydroxyproline and passive stiffness of pressure-induced hypertrophied kitten myocardium.

  • Text
  • PDF
Abstract

Passive stiffness and hydroxyproline content of myocardium hypertrophied by pressure-loading were determined in kittens 2, 8-16, and 24-52 wk after pulmonary artery banding, which initially elevated right ventricular systolic pressure by 10-15 mm Hg. Right ventricular mass increased by approximately 75%, three-quarters of which occurred during the first 2 wk after banding. Passive stiffness was assessed from resting length-tension relations of isometrically contracting isolated right ventricular papillary muscles. Stiffness constants, alpha and beta were determined from the relationship sigma = alpha (e beta epsilon - 1) where sigma = stress and epsilon = Lagrangian strain. Elastic stiffness (d sigma/d epsilon) was derived from: d sigma/d epsilon = beta sigma + beta alpha. Right ventricular hydroxyproline increased in proportion to muscle mass so that hydroxyproline concentration remained unchanged after banding. Both alpha, beta, and elastic stiffness-stress relations were similar to values in nonbanded controls. Thus, we did not observe an increase in passive stiffness or hydroxyproline concentration of pressure-stiffness or hydroxyproline concentration of pressure-induced hypertrophied myocardium in contrast to most previous studies.

Authors

J F Williams Jr, R D Potter, D L Hern, B Mathew, W P Deiss Jr

×

Full Text PDF

Download PDF (952.45 KB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts