Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Fluctuations of calcium, phosphorus, sodium, potassium, and chlorine in single alpha and beta cells during glucose perifusion of rat islets.
R K Kalkhoff, K A Siegesmund
R K Kalkhoff, K A Siegesmund
Published August 1, 1981
Citation Information: J Clin Invest. 1981;68(2):517-524. https://doi.org/10.1172/JCI110283.
View: Text | PDF
Research Article Article has an altmetric score of 6

Fluctuations of calcium, phosphorus, sodium, potassium, and chlorine in single alpha and beta cells during glucose perifusion of rat islets.

  • Text
  • PDF
Abstract

To study the relationship between islet hormonal secretion and intracellular content of five elements, a rat islet perifusion technique was used in 24 paired experiments. Control and experimental chambers each containing 100 islets, received 2.8 and 16.7 mM D-glucose, respectively. Effluent was collected frequently for hormone measurements. At eight different time intervals form 0--30 min islets were fixed and prepared for scanning electron microscopy. Over 900 unobscured alpha and beta cells were selected by size and shape criteria. Energy dispersive x-ray analysis was applied to each single cell to determine relative content of calcium (Ca), potassium (K), sodium (Na), chlorine (Cl), and phosphorus (P). Experimental chambers exhibited typical acute (0--9 min) and second phase (10--30 min) insulin secretion in association with suppression of glucagon release after 10 min. At 2 min an abrupt upward K spike in both alpha and beta cells was followed at 3--4 min with a 1.5- to 2-fold rise of Ca and a reciprocal decrease in K, Na, Cl, and P. From 3 to 30 min biphasic insulin secretion. Reduced alpha cell calcium after 6 min preceded suppression of glucagon secretion. After 2 min K related inversely to Ca content in both alpha and beta cells. These results could not be reproduced when D-galactose was substituted for D-glucose. We conclude that sequential changes of Ca content that are reciprocally related to K are predictive of beta cell insulin release and suppression of alpha cell glucagon secretion.

Authors

R K Kalkhoff, K A Siegesmund

×

Full Text PDF

Download PDF (1.64 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 4 patents
3 readers on Mendeley
See more details