The effect of thyrotropin (TSH) on the ADP-ribosylation of endogenous thyroid cell acceptor proteins was examined. Cells were “permeabilized” at 4°C in hypotonic medium and then exposed to [32P]- or [3H-adenine]NAD+. The net incorporation of labeled ADP-ribose was measured by trichloroacetic acid precipitation. TSH (100 mU/ml) enhanced ADP-ribosylation with a maximum effect after 30-60 min in the majority of experiments. TSH stimulation was observed even when the incubation contained 1,000-fold more exogenous NAD+ than the amount of NAD+ contributed by the permeabilized cells, indicating an effect on enzymatic activity rather than an alteration in NAD+ pool size or specific activity. No incorporation of radioactivity from labeled NAD+ was observed in cells not rendered permeable to NAD+ by hypotonic shock. TSH did not increase the rate of disappearance of trichloroacetic-precipitable radioactivity and did not contain intrinsic NAD+ glycohydrolase activity. Alkali and snake venom phosphodiesterase, but not ribonuclease or deoxyribonuclease digestion of trichloroacetic acid precipitable thyroid cell radioactivity, revealed primarily 5′-AMP, consistent with an effect of TSH on mono-ADP ribosylation. Nicotinamide and thymidine (50 mM) inhibited both basal and TSH-stimulated ADP-ribosylation of thyroid cell protein. Dibutyryl cyclic (c)AMP (0.1 mM) inhibited endogenous ADP-ribosylation by ∼35% but had no effect at lower concentrations. 0.5 mM isobutylmethylxanthine inhibited this reaction by ∼60%.
Sebastiano Filetti, Basil Rapoport
Usage data is cumulative from December 2023 through December 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 106 | 3 |
56 | 14 | |
Scanned page | 274 | 3 |
Citation downloads | 44 | 0 |
Totals | 480 | 20 |
Total Views | 500 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.