This study investigates the endogenous kallikrein-kinin system's role as a modulator of vasopressin action in the toad urinary bladder. Kalli-krein inhibition by aprotinin, which results in decreased kinin production, significantly increased both vasopressin and 8-Br-cyclic (c) AMP-stimulated water flow. Kinin potentiation by the kininase II inhibitor captopril (SQ 14225) significantly decreased vasopressin and 8-Br-cAMP-stimulated water flow. In contrast to water flow, vasopressin-stimulated urea permeability was decreased by aprotinin and increased by captopril. We conclude that the endogenous kallikrein-kinin system represents a significant modulator of vasopressin action and it permits separate control of vasopressin-stimulated water flow and solute transport.
C P Carvounis, G Carvounis, L A Arbeit