Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Triiodothyronine-induced Thyrotoxicosis Increases Mononuclear Leukocyte β-Adrenergic Receptor Density in Man
Ann M. Ginsberg, … , Suresh D. Shah, Philip E. Cryer
Ann M. Ginsberg, … , Suresh D. Shah, Philip E. Cryer
Published June 1, 1981
Citation Information: J Clin Invest. 1981;67(6):1785-1791. https://doi.org/10.1172/JCI110218.
View: Text | PDF
Research Article

Triiodothyronine-induced Thyrotoxicosis Increases Mononuclear Leukocyte β-Adrenergic Receptor Density in Man

  • Text
  • PDF
Abstract

β-Adrenergic receptors are increased in some tissues of experimentally thyrotoxic animals but are reported to be unchanged in mononuclear leukocytes of spontaneously thyrotoxic humans. We examined the effects of triiodothyronine (100 μg/d for 7 d) and placebo on high-affinity mononuclear leukocyte β-adrenergic receptors in 24 normal human subjects, using a double-blind design. β-Adrenergic receptors were assessed by specific binding of the antagonist (-)[3H]dihydroalprenolol. Triiodothyronine administration resulted in objective evidence of moderate thyrotoxicosis and an increase in mean (-)[3H]dihydroalprenolol binding from 25±3 to 57±9 fmol/mg protein (P < 0.001). The latter was attributable, by Scatchard analysis, to an increase in β-adrenergic receptor density (967 ± 134 to 2250 ± 387 sites per cell, P < 0.01); apparent dissociation constants did not change. Placebo administration had no effects. Marked inter- and intraindividual variation in mononuclear leukocyte β-adrenergic receptor density was also noted. Because this was approximately threefold greater than analytical variation, it is largely attributable to biologic variation. Thus, we conclude: (a) The finding of a triiodothyronine-induced increase in mononuclear leukocyte β-adrenergic receptor density in human mononuclear leukocytes, coupled with similar findings in tissues of experimentally thyrotoxic animals, provides support for the use of mononuclear leukocytes to assess receptor status in man. (b) There is considerable biologic variation in β-adrenergic receptor density in man. (c) The findings of thyroid hormone-induced increments in β-adrenergic receptor density provide a plausible mechanism for the putative enhanced responsiveness to endogenous catecholamines of patients with thyrotoxicosis.

Authors

Ann M. Ginsberg, William E. Clutter, Suresh D. Shah, Philip E. Cryer

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 96 5
PDF 38 13
Scanned page 232 6
Citation downloads 55 0
Totals 421 24
Total Views 445
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts