Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI110218

Triiodothyronine-induced Thyrotoxicosis Increases Mononuclear Leukocyte β-Adrenergic Receptor Density in Man

Ann M. Ginsberg, William E. Clutter, Suresh D. Shah, and Philip E. Cryer

Metabolism Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110

Find articles by Ginsberg, A. in: JCI | PubMed | Google Scholar

Metabolism Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110

Find articles by Clutter, W. in: JCI | PubMed | Google Scholar

Metabolism Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110

Find articles by Shah, S. in: JCI | PubMed | Google Scholar

Metabolism Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110

Find articles by Cryer, P. in: JCI | PubMed | Google Scholar

Published June 1, 1981 - More info

Published in Volume 67, Issue 6 on June 1, 1981
J Clin Invest. 1981;67(6):1785–1791. https://doi.org/10.1172/JCI110218.
© 1981 The American Society for Clinical Investigation
Published June 1, 1981 - Version history
View PDF
Abstract

β-Adrenergic receptors are increased in some tissues of experimentally thyrotoxic animals but are reported to be unchanged in mononuclear leukocytes of spontaneously thyrotoxic humans. We examined the effects of triiodothyronine (100 μg/d for 7 d) and placebo on high-affinity mononuclear leukocyte β-adrenergic receptors in 24 normal human subjects, using a double-blind design. β-Adrenergic receptors were assessed by specific binding of the antagonist (-)[3H]dihydroalprenolol. Triiodothyronine administration resulted in objective evidence of moderate thyrotoxicosis and an increase in mean (-)[3H]dihydroalprenolol binding from 25±3 to 57±9 fmol/mg protein (P < 0.001). The latter was attributable, by Scatchard analysis, to an increase in β-adrenergic receptor density (967 ± 134 to 2250 ± 387 sites per cell, P < 0.01); apparent dissociation constants did not change. Placebo administration had no effects. Marked inter- and intraindividual variation in mononuclear leukocyte β-adrenergic receptor density was also noted. Because this was approximately threefold greater than analytical variation, it is largely attributable to biologic variation. Thus, we conclude: (a) The finding of a triiodothyronine-induced increase in mononuclear leukocyte β-adrenergic receptor density in human mononuclear leukocytes, coupled with similar findings in tissues of experimentally thyrotoxic animals, provides support for the use of mononuclear leukocytes to assess receptor status in man. (b) There is considerable biologic variation in β-adrenergic receptor density in man. (c) The findings of thyroid hormone-induced increments in β-adrenergic receptor density provide a plausible mechanism for the putative enhanced responsiveness to endogenous catecholamines of patients with thyrotoxicosis.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1785
page 1785
icon of scanned page 1786
page 1786
icon of scanned page 1787
page 1787
icon of scanned page 1788
page 1788
icon of scanned page 1789
page 1789
icon of scanned page 1790
page 1790
icon of scanned page 1791
page 1791
Version history
  • Version 1 (June 1, 1981): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts