Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Demonstration of active potassium transport in the mammalian colon.
A S Kliger, … , C Bastl, J P Hayslett
A S Kliger, … , C Bastl, J P Hayslett
Published April 1, 1981
Citation Information: J Clin Invest. 1981;67(4):1189-1196. https://doi.org/10.1172/JCI110134.
View: Text | PDF
Research Article

Demonstration of active potassium transport in the mammalian colon.

  • Text
  • PDF
Abstract

The mechanism responsible for K transport in the mammalian colon is controversial. Experiments were performed to determine whether K secretion involves active as well as passive driving forces in controls and in animals with a marked increase in K secretion. In these experiments a steady-state solution was established in proximal and distal colon of both control rats and animals fed a K-enriched diet during in vivo luminal perfusion, to compare the observed luminal [K] with predicted equilibrium [K] when net water and electrolyte movement approached zero. Transmural potential difference was measured simultaneously. A difference between the predicted equilibrium and observed luminal [K] under this condition indicates active transport. In controls the observed [K] of 20 mmol/liter in proximal colon markedly exceeded the predicted value of 6.2 +/- 0.3, mean +/- SE, indicating active secretion. In contrast, the observed [K] in distal colon of 5 mmol/liter was less than predicted (10.0 +/- 1.0), suggesting active absorption. In K-loaded animals active K secretion was demonstrable and increase above control in both segments of colon. In proximal colon the observed [K] rose to 40 mmol/liter, compared to a predicted value of 7.2 +/- 0.3, whereas in distal colon the observed [K] was 50 mmol/liter vs. a predicted value of 7.0 +/- 0.8. These studies suggest active K secretion in proximal, but not in distal colon of control animals. Further, these data suggest that the increase in the capacity for K secretion that occurs in response to chronic K loading involves stimulation of an active mechanism in both proximal and distal colon.

Authors

A S Kliger, H J Binder, C Bastl, J P Hayslett

×

Full Text PDF

Download PDF (1.20 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts