Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Mucin Degradation in Human Colon Ecosystems: EVIDENCE FOR THE EXISTENCE AND ROLE OF BACTERIAL SUBPOPULATIONS PRODUCING GLYCOSIDASES AS EXTRACELLULAR ENZYMES
Lansing C. Hoskins, Erwin T. Boulding
Lansing C. Hoskins, Erwin T. Boulding
Published January 1, 1981
Citation Information: J Clin Invest. 1981;67(1):163-172. https://doi.org/10.1172/JCI110009.
View: Text | PDF
Article has an altmetric score of 3

Mucin Degradation in Human Colon Ecosystems: EVIDENCE FOR THE EXISTENCE AND ROLE OF BACTERIAL SUBPOPULATIONS PRODUCING GLYCOSIDASES AS EXTRACELLULAR ENZYMES

  • Text
  • PDF
Abstract

Recent work indicates that subpopulations of human fecal bacteria, averaging ∼1% of the total viable fecal flora, degrade the oligosaccharide side chains of hog gastric mucin, which structurally resembles human epithelial mucins. Here we report studies to determine whether degradation of mucin oligosaccharides is related to glycosidase production by bacteria growing in anaerobic fecal cultures. Triplicate cultures containing hog gastric mucin were inoculated with serially diluted feces from each of seven healthy subjects. When the stationary growth phase was attained, mucin oligosaccharide degradation and both cell-bound and extracellular activities of four glycosidases were measured in each culture. Cell-bound β-d-galactosidase, β-N-acetylglucosaminidase, and sialidase were present in bacteria growing at all levels of fecal inocula, including 10−11 g. In contrast, extracellular activities were present in every culture inoculated with 10−4−10−7 g feces, but were diminished or absent in cultures inoculated with 10−8−10−11 g feces. Bacterial autolysis was an unlikely cause of extracellular glycosidase activity, since p-nitrophenyl-α-l-fucosidase remained cell bound in cultures at every level of fecal inoculum. Degradation of mucin oligosaccharides was associated with extracellular, but not with cell-bound β-d-galactosidase, β-N-acetylglucosaminidase, and sialidase. Among the seven subjects, the estimated most probable numbers (MPN) of fecal bacteria producing extracellular β-d-galactosidase, β-N-acetylglucosaminidase, and sialidase ranged from 106−1010/g dry fecal wt, were comparable to the MPN of mucin-degrading bacteria, and were significantly smaller than the MPN of total fecal bacteria.

Authors

Lansing C. Hoskins, Erwin T. Boulding

×

Full Text PDF

Download PDF (1.72 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 1 patents
64 readers on Mendeley
See more details