Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Radioimmunoassay of human plasma lecithin-cholesterol acyltransferase.
J J Albers, … , J L Adolphson, C H Chen
J J Albers, … , J L Adolphson, C H Chen
Published January 1, 1981
Citation Information: J Clin Invest. 1981;67(1):141-148. https://doi.org/10.1172/JCI110006.
View: Text | PDF
Research Article

Radioimmunoassay of human plasma lecithin-cholesterol acyltransferase.

  • Text
  • PDF
Abstract

A sensitive and precise competitive-displacement double-antibody radioimmunoassay was developed for the human plasma enzyme lecithin-cholesterol acyltransferase (LCAT; Ec 2.3 1.43). The ability of plasma from various animal species to displace labeled human LCAT from goat anti-human LCAT could be ranked in the following order: man and sheep > nonhuman primates > cat or dog > pig > rabbit or guinea pig > mouse > rat. Normolipidemic subjects had levels of LCAT of 6.14 +/- 0.98 micrograms/ml (mean +/- SD, n = 66). Subjects with dysbeta-lipoproteinemia had the highest plasma LCAT levels (7.88 +/- 0.39 micrograms/ml, n = 7, P < 0.05), followed by hypercholesterolemic subjects (7.00 +/- 1.30, n = 41) and hypertriglyceridemic subjects (6.96 +/- 1.3, n = 10). LCAT-deficient subjects had the lowest enzyme levels (0.89, 0.83, and 0.05 micrograms/ml, respectively, and two subjects with no detectable enzyme). Males had lower LCAT levels (6.42 +/- 1.05 micrograms/ml, n = 90, for all subjects; 5.99 +/- 1.03, n = 44, for normolipidemics) than females (7.01 +/- 1.14, n = 34, for all subjects P < 0.01; 6.44 +/- 0.79, n = 22, for normolipidemics, P < 0.01). LCAT levels correlated significantly with total cholesterol (males, r = 0.384, P < 0.001; females, r = 0.519, P < 0.002); and total triglyceride (only in females, r = 0.512, P < 0.002). LCAT levels in females correlated inversely with HDL cholesterol (r = 0.341, P < 0.05) and apoprotein D (r = 0.443, P < 0.02), but no such relationship existed in males.

Authors

J J Albers, J L Adolphson, C H Chen

×

Full Text PDF

Download PDF (1.38 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts