Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Chloride Uptake by Brush Border Membrane Vesicles Isolated from Rabbit Renal Cortex: COUPLING TO PROTON GRADIENTS AND K+ DIFFUSION POTENTIALS
David G. Warnock, Victoria J. Yee
David G. Warnock, Victoria J. Yee
Published January 1, 1981
Citation Information: J Clin Invest. 1981;67(1):103-115. https://doi.org/10.1172/JCI110002.
View: Text | PDF

Chloride Uptake by Brush Border Membrane Vesicles Isolated from Rabbit Renal Cortex: COUPLING TO PROTON GRADIENTS AND K+ DIFFUSION POTENTIALS

  • Text
  • PDF
Abstract

Brush border membrane vesicles were isolated from rabbit renal cortex by Mg++-precipitation and differential centrifugation. 36Cl− and [3H]glucose uptakes were simultaneously determined by a rapid filtration technique. Lysis of the vesicles with distilled water abolished 90-95% of the radioactivity on the filters, suggesting that nearly all of the 36Cl− and [3H]glucose counts represented uptake into an osmotically reactive intravesicular space. Inwardly directed K+ gradients plus valinomycin stimulated 36Cl− uptake, demonstrating a conductive pathway for chloride uptake into brush-border membrane vesicles. 36Cl− uptake could also be stimulated by inwardly directed proton gradients (pHoutside < pHinside). This effect was seen in the absence of sodium, as well as in the presence of valinomycin when the vesicles had equal K+ concentrations inside and out. An “overshoot” phenomenon was observed when external 36Cl− was 2 mM and the external pH was lowered from 7.5 to 6.0 or to 4.5. The effect of the proton gradient was presumed to be different from the conductive mechanism because (a) the stimulation of 36Cl− uptake by inwardly directed K+ diffusion potentials was additive to the proton gradient effect, and (b) competition studies revealed statistically significant effects of thiocyanate on the conductive pathway, but not on the proton-driven pathway.

Authors

David G. Warnock, Victoria J. Yee

×

Full Text PDF

Download PDF (2.16 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts