Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Diuretics stimulate H+ secretion in turtle urinary bladder.
P D Lief, … , B F Mutz, N Bank
P D Lief, … , B F Mutz, N Bank
Published May 1, 1980
Citation Information: J Clin Invest. 1980;65(5):1095-1103. https://doi.org/10.1172/JCI109762.
View: Text | PDF
Research Article

Diuretics stimulate H+ secretion in turtle urinary bladder.

  • Text
  • PDF
Abstract

The effect of various diuretics on H+ secretion was studied in the isolated short-circuited urinary bladder of the turtle. Mucosal (urinary) chlorothiazide stimulated H+ secretion promptly, from 1.33 +/- 0.24 to 3.03 +/- 0.25 mueq/h (P less than 0.001). The effect was rapidly reversible upon washout of the drug, H+ returning to control levels, 1.37 +/- 0.26 mueq/h (P less than 0.001). Similar effects were observed with mucosal hydrochlorothiazide and mucosal ethacrynic acid/cysteine. Stimulation of H+ secretion occurred in the presence or the absence of exogenous CO2, in the presence or absence of mucosal Na+ and during inhibition of Na+ transport by ouabain. There was no stimulation of H+ secretion by uncomplexed ethacrynic acid or by mucosal furosemide. The nondiuretic sulfonamide, sulfasoxizole, and the nonsulfonamide buffer, borate, had no effect on H+ SECRETION. These observations indicate that the stimulatory effect of diuretics on H+ secretion is not related to active sodium transport, transepithelial electrical potential, or the buffering capacity of the drugs. Since the transepithelial pH gradient at which active H+ secretion was abolished was identical for chlorothiazide-treated tissues (2.68 pH U) as for control tissues (2.65 pH U, NS), the data suggest that the protonmotive force of the H+ pump was unaffected by the diuretic. This observation, plus the rapid onset and reversibility of the drugs, is consistent with an effect on the mucosal membrane to increase H+ conductance (K). The findings raise the possibility that direct enhancement of renal H+ secretion may play a role in the metabolic alkalosis induced by some diuretics.

Authors

P D Lief, B F Mutz, N Bank

×

Usage data is cumulative from June 2024 through June 2025.

Usage JCI PMC
Text version 92 8
PDF 61 12
Scanned page 351 2
Citation downloads 67 0
Totals 571 22
Total Views 593
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts