Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Rapid Publication Free access | 10.1172/JCI109636

Regulation of Calcitonin Secretion in Normal Man by Changes of Serum Calcium within the Physiologic Range

Lynn A. Austin, Hunter Heath III, and Vay Liang W. Go

Mayo Medical School, Rochester, Minnesota 55901

Endocrine Research Unit, Department of Medicine, Mayo Clinic, Rochester, Minnesota 55901

Gastroenterology Unit, Department of Medicine, Mayo Clinic, Rochester, Minnesota 55901

Find articles by Austin, L. in: PubMed | Google Scholar

Mayo Medical School, Rochester, Minnesota 55901

Endocrine Research Unit, Department of Medicine, Mayo Clinic, Rochester, Minnesota 55901

Gastroenterology Unit, Department of Medicine, Mayo Clinic, Rochester, Minnesota 55901

Find articles by Heath, H. in: PubMed | Google Scholar

Mayo Medical School, Rochester, Minnesota 55901

Endocrine Research Unit, Department of Medicine, Mayo Clinic, Rochester, Minnesota 55901

Gastroenterology Unit, Department of Medicine, Mayo Clinic, Rochester, Minnesota 55901

Find articles by Go, V. in: PubMed | Google Scholar

Published December 1, 1979 - More info

Published in Volume 64, Issue 6 on December 1, 1979
J Clin Invest. 1979;64(6):1721–1724. https://doi.org/10.1172/JCI109636.
© 1979 The American Society for Clinical Investigation
Published December 1, 1979 - Version history
View PDF
Abstract

To examine the relative importance of calcium and gastrin in regulation of calcitonin secretion, we administered graded oral doses of calcium to 10 normal men, ages 23-29 yr. Each subject had previously shown an appropriate increase in calcitonin secretion in response to a pharmacologic (0.5 μg/kg) pentagastrin injection. On separate days and in random order, each man drank 250 ml of distilled water containing 0.0, 0.5, 1.5, and 3.0 g of elemental calcium as the gluconate salt. Blood samples were drawn before and at 30, 60, 90, 120, 180, and 240 min after the oral calcium dose. The samples were analyzed for calcium by atomic absorption spectroscopy, and for gastrin and calcitonin by radioimmunoassays of established sensitivity and specificity. Ingestion of water (control) caused no change in any of the three variables. Calcium ingestion resulted in dose-related increases, within the normal range, of all three variables. Immunoreactive gastrin rose promptly, peaking at 30 min, and returning to basal levels or below by 120 min. In contrast, calcium and immunoreactive calcitonin levels rose slowly and in parallel, peaking at 120-240 min. Changes in calcitonin and changes in calcium were strongly and positively correlated, r = 0.73, when all data were pooled. Furthermore, individual linear regressions for changes in calcitonin and calcium levels (calculated separately for the three oral calcium doses in each subject) had positive slopes in 28 out of 30 sets (P < 0.01). The changes in calcitonin concentrations were much more poorly correlated with the corresponding changes in serum gastrin levels; in fact, the regression coefficient was weakly negative, r = −0.20. These results show that, at least in young adult men, changes of ambient calcium concentration within the normal range may be of major importance in physiologic regulation of calcitonin secretion. The findings are consistent with the hypothesis that calcitonin functions to prevent excessive postprandial hypercalcemia.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1721
page 1721
icon of scanned page 1722
page 1722
icon of scanned page 1723
page 1723
icon of scanned page 1724
page 1724
Version history
  • Version 1 (December 1, 1979): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts