Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Genetic evidence for a common enzyme catalyzing the second step in the degradation of proline and hydroxyproline.
D Valle, … , S C Harris, J M Phang
D Valle, … , S C Harris, J M Phang
Published November 1, 1979
Citation Information: J Clin Invest. 1979;64(5):1365-1370. https://doi.org/10.1172/JCI109593.
View: Text | PDF
Research Article Article has an altmetric score of 9

Genetic evidence for a common enzyme catalyzing the second step in the degradation of proline and hydroxyproline.

  • Text
  • PDF
Abstract

The initial step in the degradation pathways of proline and hydroxyproline is catalyzed by proline oxidase and hydroxyproline oxidase, yielding delta 1-pyrroline-5-carboxylate and delta 1-pyrroline-3-hydroxy-5-carboxylate, respectively. The second step is the oxidation of delta 1-pyrroline-5-carboxylate to glutamate and delta 1-pyrroline-3-hydroxy-5-carboxylate to gamma-hydroxy-glutamate. To determine if this second step in the degradation of proline and hydroxyproline is catalyzed by a common or by separate enzyme(s), we developed a radioisotopic assay for delta 1-pyrroline-3-hydroxy-5-carboxylate dehydrogenase activity. We then compared delta1-pyrroline-3-hydroxy-5-carboxylate dehydrogenase activity with that of delta 1-pyrroline-5-carboxylate dehydrogenase in fibroblasts and leukocytes from type II hyperprolinemia patients, heterozygotes, and controls. We found that cells from type II hyperprolinemia patients were deficient in both dehydrogenase activities. Furthermore, these activities were highly correlated over the range found in the normals, heterozygotes, and patients. We conclude from these data that a common delta 1-pyrroline-5-carboxylate dehydrogenase catalyzes the oxidation of both delta 1-pyrroline-5-carboxylate and delta 1-pyrroline-3-hydroxy-5-carboxylate, and that this activity is deficient in type II hyperprolinemia.

Authors

D Valle, S I Goodman, S C Harris, J M Phang

×

Full Text PDF

Download PDF (879.85 KB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 2 patents
Referenced in 1 Wikipedia pages
12 readers on Mendeley
See more details