The relationship between alveolar PO2 and the rate of O-demethylation of p-nitroanisole, a model substrate for cytochrome P-450 -linked mixed-function oxidation, was evaluated in the isolated rabbit lung perfused with Krebs-Ringer bicarbonate buffer. The appearance of the product, p-nitrophenol, in the pulmonary perfusate was measured spectrophotometrically, The PO2 of the ventilating gas was varied with an accurate gas mixing pump and measured with an electrochemical O2 analyzer. In control lungs ventilated with 5% CO2 in air, the rate of p-nitrophenol production was approximately equal to 3.1 +/- 0.04 (mean +/- SE; n = 9) mumol/h per g dry wt. p-Nitrophenol production was unaltered when O2 in the ventilating gas was decreased to 1%, but it was depressed reversibly when alveolar O2 WAS 0.1% OR LESS AND WAS ABOLISHED DURING VENTILATION WITH 0.005% O2. The rate of the reaction was inhibited by 50% when alveolar PO2 was 0.3 mm Hg representing and intracellular [O2] OF approximately equal to muM. In the presence of metyrapone (0.1--1 mM), an inhibitor of cytochrome P-450-dependent reactions, p-nitrophenol production was 0.07--0.17 mumol/h per g dry wt. Ventilation of lungs with varying CO concentration in 20% O2 resulted in 50% inhibition of p-nitrophenol production when CO concentration was 10% (CO/O2 = 0.5). These results indicated that O-demethylation of p-nitroanisole by the lung is a cytochrome P-450-dependent reaction and that its rate is not affected until alveolar PO2 is less than 1 mm Hg.
A B Fisher, N Itakura, C Dodia, R G Thurman
Usage data is cumulative from February 2024 through February 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 87 | 0 |
49 | 16 | |
Scanned page | 136 | 1 |
Citation downloads | 34 | 0 |
Totals | 306 | 17 |
Total Views | 323 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.