Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Free access | 10.1172/JCI109504

Concentrations of Insulin and of Insulin Receptors in the Brain are Independent of Peripheral Insulin Levels: STUDIES OF OBESE AND STREPTOZOTOCIN-TREATED RODENTS

Jana Havrankova and Jesse Roth

Diabetes Branch, National Institute of Arthritis, Metabolism and Digestive Diseases, National Institutes of Health, Bethesda, Maryland 20014

Laboratory of Clinical Science, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20014

Find articles by Havrankova, J. in: JCI | PubMed | Google Scholar

Diabetes Branch, National Institute of Arthritis, Metabolism and Digestive Diseases, National Institutes of Health, Bethesda, Maryland 20014

Laboratory of Clinical Science, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20014

Find articles by Roth, J. in: JCI | PubMed | Google Scholar

Published August 1, 1979 - More info

Published in Volume 64, Issue 2 on August 1, 1979
J Clin Invest. 1979;64(2):636–642. https://doi.org/10.1172/JCI109504.
© 1979 The American Society for Clinical Investigation
Published August 1, 1979 - Version history
View PDF
Abstract

In view of the potent influences of the central nervous system on glucose metabolism and on its hormonal regulators, and our recent finding of insulin and insulin receptors throughout the central nervous systsem, we have examined extreme conditions of hyperinsulinemia (obese mice) and hypoinsulinemia (streptozotocin-treated rats) with respect to changes in brain insulin and receptor content. Sprague-Dawley rats given streptozotocin (100 mg/kg body wt) developed severe diabetes and by 48 h showed no change in brain insulin. Rats given 65 mg/kg streptozotocin also had severe diabetes, but survived longer. Both at 7 d and at 30 d after streptozotocin treatment there was no significant change in brain insulin or in brain content of insulin receptors, despite the fact that peripheral hepatic receptors were elevated and pancreatic insulin was markedly depleted.

The obese mice were studied at 8-10 wk when peripheral plasma insulin concentrations were 50-fold elevated and receptors on peripheral target cells were reduced to ≅40-50% of normal; brain insulin concentrations and receptor content were indistinguishable from those of thin littermates. Thus, brain insulin, which is typically 10 times higher than plasma insulin concentrations, and brain receptor content, which is equivalent to receptor content on peripheral tissues, appears to be regulated entirely independently of hormone and receptor in the periphery. These findings are consistent with the hypothesis that insulin in the central nervous system is synthesized by the neural elements, and plays a role in the central nervous system which is unrelated to peripheral glucose metabolism.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 636
page 636
icon of scanned page 637
page 637
icon of scanned page 638
page 638
icon of scanned page 639
page 639
icon of scanned page 640
page 640
icon of scanned page 641
page 641
icon of scanned page 642
page 642
Version history
  • Version 1 (August 1, 1979): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts