Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Micropuncture determination of pH, PCO2, and total CO2 concentration in accessible structures of the rat renal cortex.
T D DuBose Jr, … , M S Lucci, N W Carter
T D DuBose Jr, … , M S Lucci, N W Carter
Published August 1, 1979
Citation Information: J Clin Invest. 1979;64(2):476-482. https://doi.org/10.1172/JCI109485.
View: Text | PDF
Research Article

Micropuncture determination of pH, PCO2, and total CO2 concentration in accessible structures of the rat renal cortex.

  • Text
  • PDF
Abstract

Previous studies evaluating the mechanism of renal HCO-3 reabsorption have assumed equilibrium between systemic arterial blood and tubular fluid PCO2. We have recently reported that the PCO2 in proximal and distal tubular fluid as well as the stellate vessel significantly exceeded arterial PCO2 by 25.9 +/- 0.92 mm Hg. The purpose of this study was to determine directly, for the first time, pH, PCO1, and total CO2 concentration in the accessible structures of the rat renal cortex with both microelectrodes and microcalorimetry. In addition, the concentrations of chloride and total CO2 were compared in the stellate vessel. The data demonstrate that: (a) values for total [CO2] in both the proximal tubule and stellate vessel calculated from in situ determination of pH and PCO2 closely agree with the measured values for total [CO2]: (b) values for chloride concentration in the stellate vessel are significantly less than the corresponding values in systemic plasma (delta[Cl-] = 5.6 meq/liter); and (c) the rise in [HCO-3] from systemic to stellate vessel plasma closely approximates the observed reciprocal fall in [Cl-] in this structure.

Authors

T D DuBose Jr, L R Pucacco, M S Lucci, N W Carter

×

Usage data is cumulative from June 2024 through June 2025.

Usage JCI PMC
Text version 144 1
PDF 55 10
Scanned page 206 3
Citation downloads 39 0
Totals 444 14
Total Views 458
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts