Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Specific Inhibition of the Polymorphonuclear Leukocyte Chemotactic Response to Hydroxy-Fatty Acid Metabolites of Arachidonic Acid by Methyl Ester Derivatives
Edward J. Goetzl, … , Vernon N. Reinhold, Robert R. Gorman
Edward J. Goetzl, … , Vernon N. Reinhold, Robert R. Gorman
Published June 1, 1979
Citation Information: J Clin Invest. 1979;63(6):1181-1186. https://doi.org/10.1172/JCI109412.
View: Text | PDF
Research Article

Specific Inhibition of the Polymorphonuclear Leukocyte Chemotactic Response to Hydroxy-Fatty Acid Metabolites of Arachidonic Acid by Methyl Ester Derivatives

  • Text
  • PDF
Abstract

The human polymorphonuclear (PMN) leukocyte chemotactic activity of the hydroxy-fatty acid metabolites of arachidonic acid, 12-l-hydroxy-5,8,10-heptadecatrienoic acid (HHT) and 12-l-hydroxy-5,8,10,14-eicosatetraenoic acid (HETE), is eliminated by methylation. Both methyl esters are specific competitive inhibitors of the PMN leukotactic responses to the parent stimuli, and exert no effect on the responses to formyl-methionyl peptides or chemotactic fragments of the fifth component of complement. 50% inhibition of the in vitro chemotactic responses of PMN leukocytes to HETE and HHT was achieved by an equimolar concentration of the corresponding methyl esters, whereas reciprocal cross-inhibition was observed at molar ratios of HETE methyl ester to HHT and HHT methyl ester to HETE which reflected the three- to fivefold greater chemotactic potency of HETE relative to HHT. Methyl esters of structurally related, but nonchemotactic, fatty acids did not competitively inhibit the chemotaxis elicited by HETE or HHT. The intraperitoneal injection of HETE in guinea pigs evoked an eosinophil response at 30 min and a neutrophil response at 5 h, which were prevented by a one-to twofold molar ratio of HETE methyl ester. The competitive inhibition of the in vitro chemotactic activity and the in vivo leukotactic effect of the unsaturated hydroxy-fatty acids by homologous methyl ester derivatives suggests that the cellular component of natural inflammatory reactions may be susceptible to specific regulation by receptor-directed modulation of the activity of the predominant chemotactic principles.

Authors

Edward J. Goetzl, Frank H. Valone, Vernon N. Reinhold, Robert R. Gorman

×

Full Text PDF

Download PDF (1012.97 KB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts