Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Citations to this article

Hypoxanthine Uptake in Isolated Rat Renal Cortical Tubule Fragments
John W. Foreman, Stanton Segal
John W. Foreman, Stanton Segal
Published April 1, 1979
Citation Information: J Clin Invest. 1979;63(4):765-771. https://doi.org/10.1172/JCI109361.
View: Text | PDF
Research Article

Hypoxanthine Uptake in Isolated Rat Renal Cortical Tubule Fragments

  • Text
  • PDF
Abstract

Isolated renal tubule fragments prepared from adult Sprague-Dawley rats were used to study the cellular uptake of hypoxanthine. This uptake was rapid, reaching a steady state after 30 min of incubation. Analysis of the intracellular pool during the initial uptake and at the steady state revealed a concentration gradient of hypoxanthine consistent with active transport, although only one-third of the transported hypoxanthine remained unmetabolized. The remainder of the transported hypoxanthine was converted to inosine and inosinic acid, but detectable conversion to uric acid was not noted. A kinetic analysis of uptake revealed that two systems for cellular entry of hypoxanthine existed with Km1 = 0.005 and Km2 = 0.80 mM. Hypoxanthine uptake at physiologic concentrations was oxygen, sodium, and temperature dependent, but the addition of metabolic fuels and alteration of the medium pH over the range of from 6.1 to 7.4 had no effect. Adenine, guanine, and inosine inhibited the uptake of hypoxanthine via the low-Km system which mediates the majority of uptake at physiologic levels. Xanthine, uric acid, and probenecid inhibited uptake via the high-Km system, but did not affect uptake via the low-Km system. The data indicate that hypoxanthine at physiologic levels is transported into the renal tubule cell via a system different from that for other oxypurines.

Authors

John W. Foreman, Stanton Segal

×

Total citations by year

Year: 1986 1982 1981 Total
Citations: 1 1 2 4
Citation information
This citation data is accumulated from CrossRef, which receives citation information from participating publishers, including this journal. Not all publishers participate in CrossRef, so this information is not comprehensive. Additionally, data may not reflect the most current citations to this article, and the data may differ from citation information available from other sources (for example, Google Scholar, Web of Science, and Scopus).

Citations to this article (4)

Title and authors Publication Year
The use of renal tubule fragments isolated from the rat to investigate aspects of gentamicin nephrotoxicity
SB Chahwala, ES Harpur
Journal of Pharmacological Methods 1986
Homocystine uptake in isolated rat renal cortical tubules
JW Foreman, H Wald, G Blumberg, LM Pepe, S Segal
Metabolism 1982
Amino acid uptake by isolated renal brush border membrane vesicles in various buffers
JW Foreman, H Wald, RA Reynolds, S Segal
Biochimica et Biophysica Acta (BBA) - Biomembranes 1981
Transport and Inherited Disease
NR Belton, C Toothill
1981

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts