Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI109298

Administration of Gonadal Steroids to the Castrated Male Rat Prevents a Decrease in the Release of Gonadotropin-Releasing Hormone from the Incubated Hypothalamus

Robert S. Rudenstein, Homayoon Bigdeli, Maureen H. McDonald, and Peter J. Snyder

Endocrine Section, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104

Find articles by Rudenstein, R. in: PubMed | Google Scholar

Endocrine Section, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104

Find articles by Bigdeli, H. in: PubMed | Google Scholar

Endocrine Section, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104

Find articles by McDonald, M. in: PubMed | Google Scholar

Endocrine Section, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104

Find articles by Snyder, P. in: PubMed | Google Scholar

Published February 1, 1979 - More info

Published in Volume 63, Issue 2 on February 1, 1979
J Clin Invest. 1979;63(2):262–267. https://doi.org/10.1172/JCI109298.
© 1979 The American Society for Clinical Investigation
Published February 1, 1979 - Version history
View PDF
Abstract

The influence of testosterone on gonadotropin-releasing hormone (GnRH) secretion was assessed indirectly by altering the serum testosterone concentration of male rats and measuring GnRH release from their incubated hypothalami 1 wk later.

GnRH release from hypothalami of castrated rats was 13.4±1.2 (SE) pg/h, compared to 35.3±3.8 pg/h from hypothalami of intact rats (P < 0.001). GnRH release from the hypothalami of castrated rats treated with testosterone propionate, 100 or 500 μg daily, was 25.0±3.4 pg/h and 27.9±3.6 pg/h, which is significantly greater (P < 0.05 and P < 0.01, respectively) than that from hypothalami of castrated rats treated only with sesame oil.

A similar decrease in GnRH release from hypothalami of hypophysectomized rats and prevention of this decrease by treating the hypophysectomized rats with testosterone propionate is evidence that the observed effects of testosterone are not mediated via luteinizing hormone and(or) follicle-stimulating hormone secretion. Treatment of castrated rats with either dihydrotestosterone propionate or estradiol benzoate also prevented the decrease in GnRH release from the hypothalami of castrated rats.

We conclude that testosterone, dihydrotestosterone, and estradiol all prevent the decrease in GnRH release from hypothalami of castrated rats treated with these steroids. The possibility exists that these steroids may also maintain GnRH secretion in vivo.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 262
page 262
icon of scanned page 263
page 263
icon of scanned page 264
page 264
icon of scanned page 265
page 265
icon of scanned page 266
page 266
icon of scanned page 267
page 267
Version history
  • Version 1 (February 1, 1979): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts