Actively metabolizing human erythrocytes catalyze the extracellular reduction of ferricyanide to ferrocyanide. Because neither of these anions can enter the cell, reducing equivalents generated in the course of glycolysis must in some manner be transferred across the cell membrane, thereby resulting in ferricyanide reduction. Work described in this paper suggests that the transmembrane reduction is effected by ascorbic acid. This compound in its oxidized form (dehydroascorbate) rapidly enters the cell. Here it obtains reducing equivalents which appear to come from NADH made available at the level of glyceraldehyde 3-phosphate dehydrogenase. Once reduced, it leaves the cell as ascorbic acid and accomplishes the non-enzymatic reduction of ferricyanide.
E P Orringer, M E Roer
Usage data is cumulative from November 2023 through November 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 125 | 0 |
60 | 18 | |
Scanned page | 211 | 8 |
Citation downloads | 47 | 0 |
Totals | 443 | 26 |
Total Views | 469 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.